Demonstrating The F28004x's Value Propositions in Real-Time Systems Solutions

Matthew Pate C2000

Training Summary

F28004x's Value Proposition per Systems Application:

Through the integration of various high-performance modules including: analog, controls and communications peripherals; C2000 has designed the F28004x family for multiple system solutions to help either reduce the total quantity of components (reduce hardware cost) or increase the efficiency in executing the core function of the system. Demonstrating to customers the value in the integration of these peripherals with respect to specific systems solutions can be a daunting task. This presentation will outline how to illustrate to the customer the value proposition in designing F28004x based systems solutions per a targeted subset of peripherals for multiple system applications.

This session will provide examples on how to demonstrate the value of F28004x in the following system applications:

- One Motor + PFC (3 PGAs/motor and 1 for PFC)
- Digital Power
- Industrial Drives

Training level: Intermediate

Course Details: Audience: Digital, Systems

Matthew Pate Product Marketing C2000 MCU

Career

- BS Engineering Physics Murray State University(2000)
- Member of C2000 MCU team for 14 years involved in applications, test, and marketing teams

Expertise

- Multi-displinary background in both analog and digital modules
- Involved in chip architecture and productization of 1st Piccolo devices 2802x/3x/6x
- C2000 Digital Power Marketing

Detailed Agenda

- Piccolo 28004x Overview
 - General enhancements for all systems
- Digital Power Space
- Industrial Drives Space
- Motor Space

Piccolo[™] F28004x

CS 1Q17 / RTM 1Q18 http://www.ti.com/product/TMS320F280049M

Differentiation

- 100MHz / 256KB flash / 100 KB SRAM
- 7 on-chip PGA(3/6/12/24) with post gain filtering and bypass option
- Next Generation CLA; support for continuous background task
- PMBUS HW support
- Addition of CW/CCW encoder support
- Under ½ power consumption of F2806x device
- Single Supply Support including on-chip DC/DC VREG
- 3 12-bit 3.5MSPS ADC with post processing threshold actions
- 7 Windowed Comparators + 2 12-bit output DACs
- 4 Sigma Delta Demodulation Channels
- CLB

Isolated Comms - FSI

- · Communications speed across isolation barrier(hot/cold)
- · 200Mbps capability with HW generated/embedded CRC
- HW skew control for isolation barrier compensation

Tools

F28004x Experimenter's Kit

Part Number: TMDXDOCK280049M http://www.ti.com/tool/TMDSDOCK280049M

F28004x		Temperatures		105C	125C	Q100	
Sensing	Processing			Actuation			
ADC1: 12-bit, 3.5 MSPS, 8ch	C28x™ DSP core 100 MHz			8x ePWM Modules 16x Outputs (16x High-Res) Fault Trip Zones			
ADC2: 12-bit, 3.5 MSPS, 8ch							
ADC3: 12-bit, 3.5 MSPS, 8ch		FPU					
7x Windowed Comparators w/ Integrated		TMU VCU-I		2x 12-bit DAC			
12-bit DAC					Connectiv	/ity	
7x PGAs	CLA core 100 MHz		-	3x UART(1 LIN)			
4x Sigma Delta Channels (2x Filters per channel)				2x I2C (1x true PMBus)			
Temperature Sensor		Electing Point Math		2x SPI			
2x eQEP			-8	2x CAN 2.0B			
7x eCAP (2x HRCAP)		6ch DMA			FSI		
			_	F	Power & Clo	cking	
System Modules		Memory			2x 10 MHz 0-pi	1 OSC	
3x 32-bit CPU Timers	Up	to 256 KB Flash +ECC			1.2V VRE	3	
NMI Watchdog Timer	Up	o 100 KB SRAM +parity		1.2V DCDC Debua			
192 Interrupt PIE	2x	128-bit Security Zones					
		Boot ROM		cJTAG / Real-time JTAG			
	InstaSPIN™ Motor ROM						

Piccolo F28004x Block Diagram

CLA Type 2 Enhancements

- Background Task
 - Option to run 8 tasks or 7 tasks and 1 background task
 - Task 8 can be used as background task
 - · Runs continuously until disabled or device/soft reset
 - Can be triggered by a peripheral or software
 - Tasks 1 7 can interrupt background task in priority order (1-7)
 - Can make portions of background task uninterruptible, if needed
- Background Task Uses:
 - Continuous functions such as communications and clean-up routines
 - Used by InstaSPIN when running CLA code

- MDEBUGSTOP1
 - Used for software breakpoint (similar to C28x breakpoints)
 - Replaces instruction where execution must halt
 - Differs from MDEBUGSTOP
 - · Flushes all instructions that have been fetched
 - On step or run free will re-fetch same instruction it replaced
- Other
 - Two new hardware breakpoint and debug registers
 - Used by CCS to improve emulation capabilities

CPU / CLA / DMA Master Access

- CLA and DMA can now have simultaneous access with arbitration
- Peripheral master can have access without interference from other masters
 - Enables the CLA to utilize DMA transfers

F2807x

F28004x

Memory Enhancements

- Flash is now separated into 2 128KB banks independent banks
 - Support for Live FW update, writing to one flash while reading/executing from other is supported
 - ECC syndrome added to flash for enhanced system reliability
 - 1 bit correct
 - 2 bit detect per 128 bit word
- For flash programmation now have HW state machine to control programming times/pulses
 - Previous Piccolo devices used C28x instructions limiting the CPU BW for application code/ISR service

HRCAP Type 0 vs. Type 1 Comparison

Type 0 HRCAP

- A separate module than eCAP
- No CLA and DMA access
- No support for one-shot operation
- HRCAP needs to be clocked at 98 MHz 120 MHz
- Complex software intensive based calibration routine
- No capture operation during calibration
- Calibration must be run periodically → one dedicated HRPWM and HRCAP for calibration

Type 1 eCAP:HRCAP

- eCAP extension (similar to PWM)
- CLA and DMA access
- One-shot operation
- No dependency on clock frequency
- Hardware calibration
- Capture operation during calibration
- Continuous hardware calibration

ADC PostProcessing Block

- Offset Correction
- Reference Subtraction

- Threshold Compare
- Sample Delay
 Measurement

CMPSS Type 1 Enhancements / Changes

- Enhancements / (
 - Blanking capabi
 - Helps clear-an
 - Fixed trip vs clear-and-reset arbitration when Ramp Generator is used
 - Clear-and-reset is now higher priority than trip
 - CMPSS Comparator POS/NEG input signals are now independently selectable via an analog subsystem MUX scheme
 - Previously the POS/NEG pin input options were tightly coupled on Soprano between HIGH and LOW comparators

Buffered DAC Type 1 Changes

- Enhancements / Changes
 - Pull-down resistor on output removed
 - 1x and 2x gain options
 - Increased load support
 - DAC internal reference 2.5v and 3.3v option
 - 3.3v option outputs 1.65 and then use 2x mode on DAC
 - 2.5v option outputs 2.5v and then use 1x mode on DAC

Programmable Gain Amplifier (PGA)

 Amplifies small input signals to increase the dynamic range of the downstream ADC and CMPSS modules

- PGA Enhancements (over F2805x)
 - Additional gain mode of 24x
 - Support for low-pass filtering (by connecting an external capacitor to PGA_OF; cut-off frequency based on standard RC equation $f_c = \frac{1}{2\pi RC}$)
 - Hardware offset/gain trimming (instead of software post-processing)

Digital Power

Improvements for Digital Power

Key Enhancements (ePWM Type 4)

- **<u>Delayed Trip Functionality</u>**: Dead-band insertion capability on a trip event.
- **<u>One Shot Reload:</u>** One shot reload from shadow to active registers.
- **<u>Global Reload:</u>** Global reload of shadow to active registers with programmable pre-scale of load events.

- <u>Remapped Register Space</u>: Registers grouped by their functionality for better alignment and future expansion.
- **<u>Support for Valley switching</u>**. Ability to switch PWM output at the valley point for valley switching.

Delayed Trip Functionality

Peak Current Mode Control – Sync Boost

Peak Current Mode Control – PSFB

One Shot & Global Reload Capability

Shadow to Active Load of Registers

- Many enhancements already in place in Type-2
 - EPWM link, enables user to update all PWMs simultaneously
 - Reload on Sync, ensures that registers are loaded with the correct values
- What is missing on type-2?
 - INT can happen anytime during the update of multiple linked registers
 - Issue when all registers are not updated and Sync happens.

One Shot & Global Reload

- For all registers that have this mode enabled, shadow to active loads occur at the same event defined by GLDCTL[GLDMODE]
- Global reload pulse pre-scalar provides capability to choose transfers to happen once in 'N' occurrences of selected event

One Shot & Global Reload

One shot reload usage

Initialization

- Enable global reload
- Link GLDCTL2 registers

Run Time

- Update all registers
- Write '1' to GLDCTL2[OSHTLD]
- Write '1' to GLDCTL2[GFRCLD], if desired
- For all registers that have this mode enabled, shadow to active loads occur at the same event defined by GLDCTL[GLDMODE]
- Global reload pulse pre-scalar provides capability to choose transfers to happen once in 'N' occurrences of selected event

Example – Interleaved Resonant Converters

Remapped Register Space

Register Mapping

- PWM registers are spread over four data pages to allow future expansion
- Registers are grouped according to their functionality
- This reduces number of data page moves required, improving execution time

Support for Valley Switching

Valley Switching

- Soft-switching technique that improves system efficiency and performance
- Switch should be turned ON at the valley point of the voltage across it

Challenges

 Resonant oscillations are highly dependent on circuit parasitics and on operating conditions – making it difficult to detect optimum valley point

Valley Switching Enhancements Highlights

- A hardware mechanism to precisely control PWM ON/OFF time instants to implement valley switching
- Captures time period of oscillations to accurately delay PWM switching instant
- Ability to add software programmable offset to captured delay
- Programmable number of edges before the delay takes effect
- Multiple choices of triggers and events
- Allows easy adaptability for optimum performance under changing system/operating conditions

Efficiency Results

- Highlighted points in the fixed frequency curves correspond to the data where the MOSFET happens to turn ON at the peak of the drain-source voltage
- When valley switching is used the MOSFET is always turned ON at the valley of the drainsource voltage
- Biggest efficiency improvements are seen at the highlighted points

Industrial Drives

Improvements for Industrial Drives

Position Manager Technology

Fast Serial Interface (FSI) – Type 0

- <u>Motivation</u>: trend/desire to move the control to the HOT side of a drive, but existing isolation technology is too slow or not safe
 - FSI will provide high reliability, high speed transfers across isolation
- Features:
 - Point-to-point (single master/single slave)
 - Fast transfer: 50 MHz (Targeted)
 - Double data rate (200Mbps @ 50MHz clock)
 - Single or dual data lines
 - Independent Transmit and Receive modules
 - 8-bit H/W CRC and checker
 - Skew compensation for signal delay due to isolation
 - Line break detection
 - Supports 5 kHz 300 kHz PWM loops (single/multi)

PFC + Motor Control

Motors Application Example

Basic Motor Control Block Diagram

Piccolo F28004x: Complete system integration: CLA + analog integration + motor library = *Flexible* motor engine

Closing Remarks

TMS320F28004x targeted for real time control

- All EE improvements
 - Dual Bank Flash
 - CLA Type 2
 - Memory Subsystem
- Digital Power
 - Delay Trip
 - Global Load and One Shot Improvements
 - Valley Switching Support in HW
- Industrial Drives
 - Same encoder support as F28379D
 - Additional encoder standards coming
- Motor Control
 - InstaSPIN on CLA!

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

