LDO Architecture Review

How different LDO architectures influence performance

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

Standard LDO Architecture

Feedback Resistors determine output voltage

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

Simplified AC Model

- This system block diagram represents a simplified small-signal AC model of a typical LDO.
- Ideally, V_{IN} has no impact on the loop.

Simplified AC Model With Input Coupling

In the real world, V_{IN} will couple into the ٠ loop and degrade loop performance.

Simplified AC Model

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

MOSFET Pass Devices

- P-Type MOS (PMOS):
 - Very common. Low VDO, low Iq, no charge pump or bias rail requirements.
- N-Type MOS (NMOS):
 - Lowest VDO possible, however, error amplifier needs higher voltage than VIN to drive it.

- PNP:
 - Can achieve higher voltage depending on process capability.

(c) PNP

PMOS Pass Device

PMOS Advantages:

- Simple
- Lowest cost structure

PMOS Disadvantages:

- R_{DSON} is higher vs. NMOS
- Common-drain structure gives higher output impedance

NMOS Pass Device

NMOS Advantages:

- Better R_{DS(on)} per unit area
 - smaller die size
- Common Drain Structure gives low output impedance
 - Wide range of stability vs C_{OUT}
 - Low output impedance

Disadvantages:

Needs a charge pump or external bias rail to achieve low V_{IN} – V_{OUT}

PNP Pass Device

PNP Advantages:

- Can achieve higher VIN voltages
- Error amplifier design in bipolar process can achieve low noise

Disadvantages:

- Difficult to design for low Iq
- Dropout can be higher for light loads

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

Dropout

- Dropout, or VDO, is the minimum voltage necessary from VIN to VOUT to maintain regulation.
- PSRR, noise, load regulation and transient response are all significantly worse when device is in dropout.
- Dropout -> VDO = V_{IN} V_{OUT} when V_{OUT} drops from nominal regulation voltage

- For a MOSFET pass element, pass device enters linear region when the LDO goes into dropout.
- In dropout, VDO is proportional to load current

Dropout Dependancies For MOS

....

TEXAS INSTRUMENTS

Dropout For PNP

 For a PNP pass device, when V_{CE} is low, the device is in "saturation". In this state, the voltage is not directly proportional to the output current.

 Many devices, such as the TPS7A49, use an anti-saturation circuit to improve recovery time out of saturation.

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

Intrinsic Noise VS Input Signal Coupling

- LDO output voltage disturbances that are not load-related are composed of Input Signal Coupling that is coupled through the pass device, as well as Intrinsic Noise that comes from primarily the reference and error amplifier.
 - **Power Supply Rejection Ratio** (PSRR) determines how much noise from the input couples into the output.
 - Intrinsic Noise (or simply "Noise") is generated primarily from the internal reference and error amplifier.

LDO Noise, Dominant Noise Sources

- Noise is combined into total output noise for the noise specification.
- Typically noise is specified in total RMS noise from 10 Hz to 100 kHz
- Dominant noise sources are the voltage reference and error amplifier.

Noise Reduction (NR) with Bandgap RC Filter

 The Reference Voltage noise can be filtered with an RC filter. This can be external or internal. On external devices, add a capacitor to the NR pin.

Increasing C_{NR}

pushes noise lower.

Low Noise C_{NR} and Error Amplifier Example – TPS7A91

Noise Reduction (NR) with Internal Bandgap RC Filter - LP5907

- NR filter is integrated with very large (1 G Ω) filter resistor
- No C_{NR} necessary

Feedback Resistor's Effect on Noise

- LDO Intrinsic noise is dominated by noise from the reference and the error amplifier.
- In a standard LDO, decreasing A_{FB} (feedback resistor attenuation) will result in higher noise at the output.
- Higher output voltages (lower A_{FB}) will have higher noise gain.

Adding a C_{FF} reduces Closed-Loop Gain

- C_{FF} brings resistor attenuation (A_{FB}) to 1 at high frequency
- C_{FF} can also improve transient response

Texas Instruments

Low Noise Example: TPS7A4700 36V 1A 4μ Vrms

- To reduce closedloop gain, and therefore noise, some devices gain up the reference, and then use the RC filter.
 - The bandgap voltage reference is gained up with internal resistors.

The effective reference voltage is then filtered after the reference amplifier.

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

PSRR

 PSRR (Power Supply Ripple Rejection) represents the ability of the LDO to filter input voltage changes. This is critical for low-noise applications.

Typical PSRR Curve

Region 1 is determined by:

 PSRR or Thermal Coupling into Reference

Region 2 is determined by:

Open-Loop Gain of Error Amplifier

Region 3 is determined by:

Parasitic capacitance and output capacitor

High PSRR with Additional Pass Device

Some devices use an additional pass element, connected as a "cascode" device. Using a cascode pass device can improve the pass device output impedance, and therefore, the PSRR.

Examples of this are the LP38798 (shown), TPS7A81 and TLV707.

- General Block Diagram Review
- Small Signal Model
- LDO Pass Devices
 - PMOS
 - NMOS
 - BJT
- LDO Performance
 - Dropout
 - Noise
 - PSRR
 - Startup

How Startup Works (ideally)

Ideal LDO startup behavior occurs when VFB tracks the reference from 0 V to the final value.

Non-ideal Startup

Many LDOs have a high dV/dT, or "jump" at startup. This is commonly due to limited common mode range of the error amplifier.

Non-ideal Startup

The high dV/dt change on the output will result in a peak of current into the output capacitor.

Output capacitor current will flow from the input, causing a peak of current at the input.

The input current will lead to a drop in the input voltage, which can create problems on the input rail.

Ideal Startup example: TPS74X

The TPS74X family has constant-current soft-start capacitor charging, leading to well-controlled startup behavior.

🦆 Texas Instruments

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

