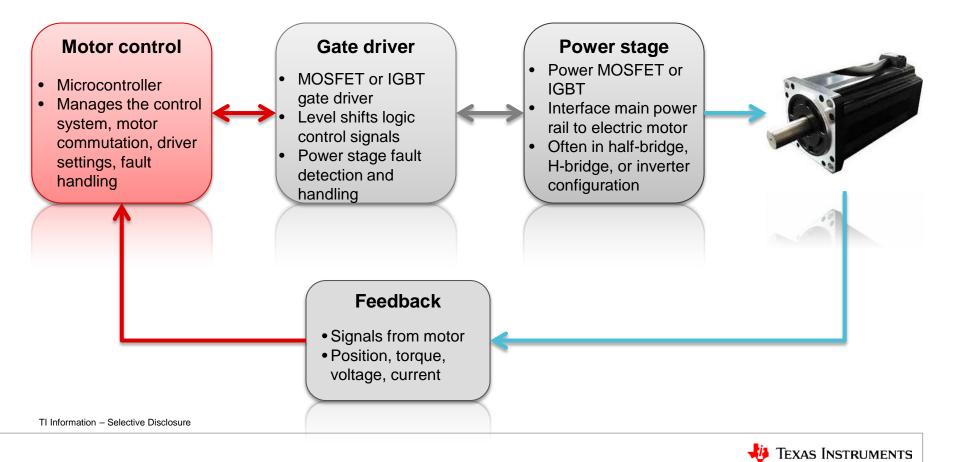
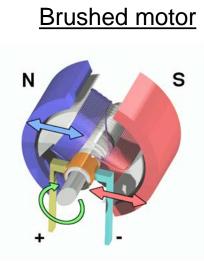
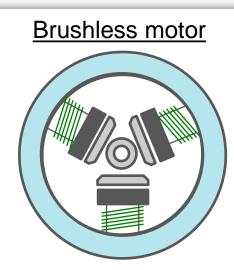
TI Motor Drive Webinar May 2017

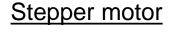

Tips and component recommendations: Easier, faster motor drive integration


Innocent Irakoze Product marketing engineer for TI's integrated motor controllers

Electric motor control system overview



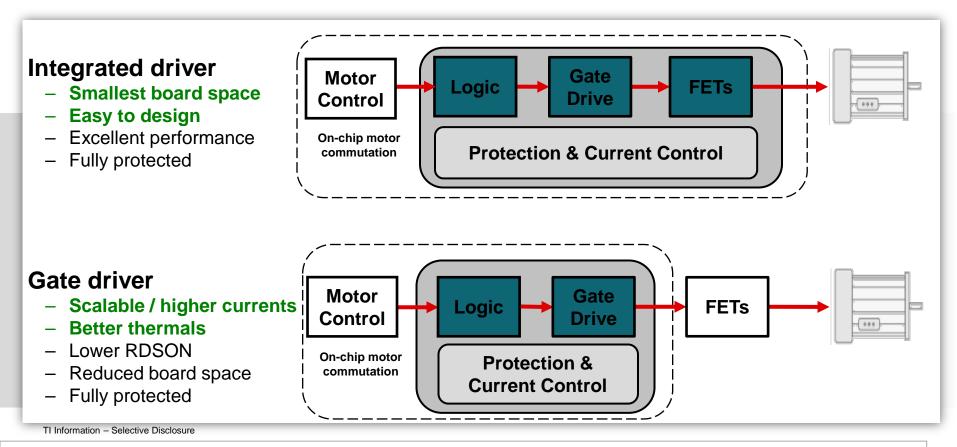
Motor Types



- + Low cost
- + Easy to design
- Brushes wear out
- Inefficient

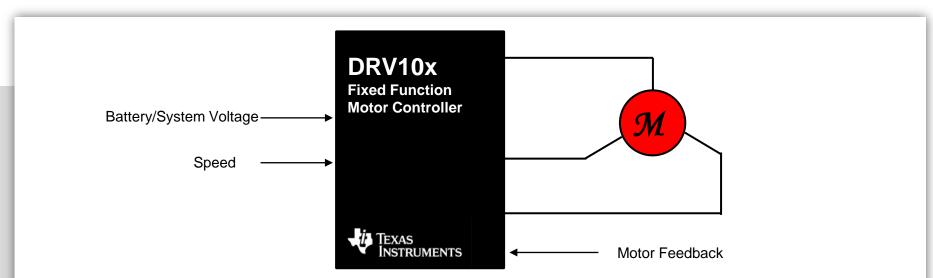
TI Information - Selective Disclosure

- + Very efficient
- + Long life / reliable
- ExpensiveComplex design


S

+ Open loop position / speed control + Simple control

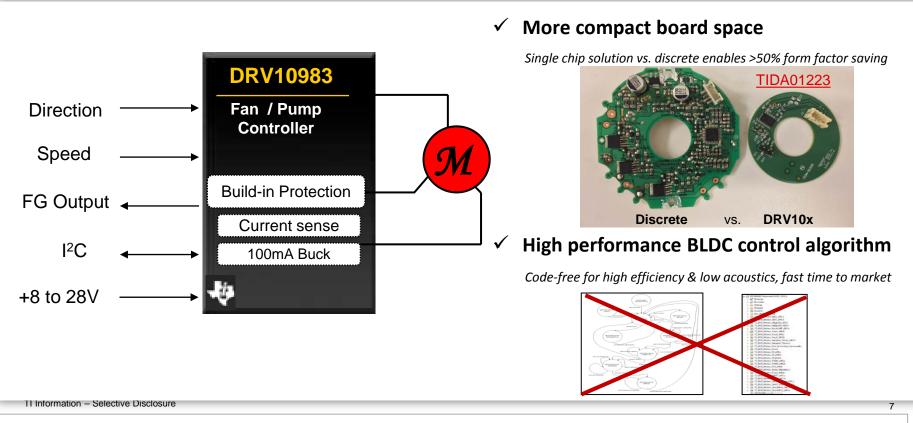
- Resonance
- Noise
- [Brushed & Stepper] Image source: www.robot-andmachines-design.com



DRV integrated drivers & gate drivers

Integrated Motor Controller overview

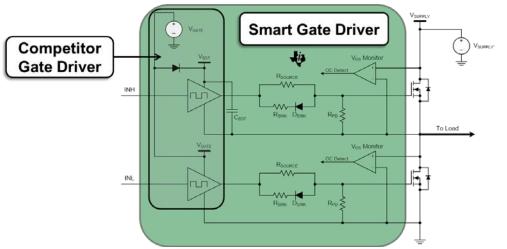
Customer benefits


- Optimal efficiency, ultra-low acoustic noise, minimal vibration to provide excellent system performance and reliability
- Code-free tunability provides minimum design efforts and use of the device
- Small board space usage and BOM count to save customer overall system cost

6

Motor Driver Device: DRV10983

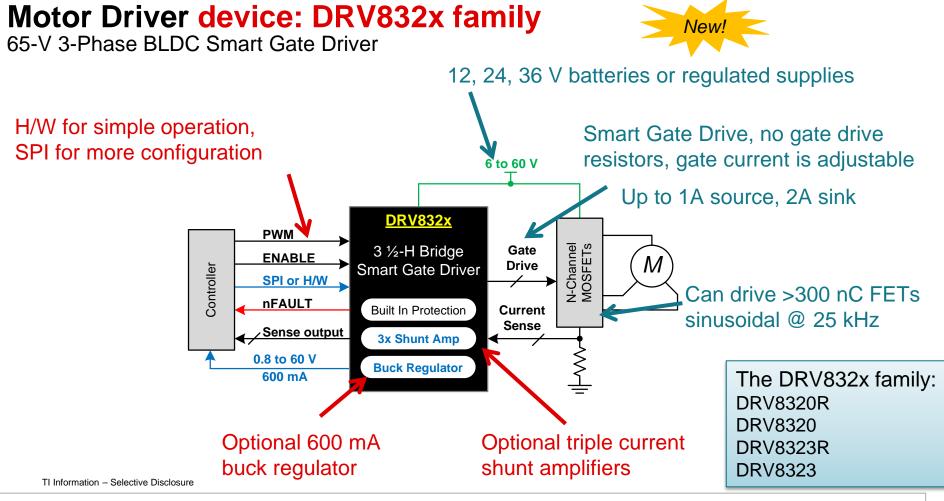
+24V, 3-phase Sensorless BLDC Motor Driver



Smart gate drive technology

Challenge:

Solution: Integrated, adjustable, and protected gate driver



Benefits:

- High gate drive current and minimized dead time (efficiency)
- Easy, adjustable slew rate control (flexibility)
- Gate driver short and dV/dt protection (robustness)
- Removes external gate drive components (cost)

• Smart Gate Driver

Broad portfolio of Motor Drivers

Brushed-DC

Supply voltage support:

Low voltage, 12, 24, 36, 48 V

Technologies:

Integrated Current Sensing, Smart Gate Drive

Differentiation:

Small footprint & high efficiency Inrush current protection Low-cost

TI Information - Selective Disclosure

Supply voltage support: Low voltage, 12, 24, 36, 48 V

Technologies:

Integrated Current Sensing, AutoTune. & Smart Gate Drive

Differentiation:

Automatic decay selection Indexers & precision microsteps Passive component integration

Supply voltage support: Low voltage, 12, 24, 36, 48 V

Technologies:

Integrated state machine control Low voltage support (start-stop) Smart Gate Drive

Differentiation:

Sensorless & sensored support Integrated shunt amplifiers Integrated power management

SafeTI[™] ASILB. D

Hero devices: DRV832x DRV8305-Q1 DRV10983/10970 DRV3205

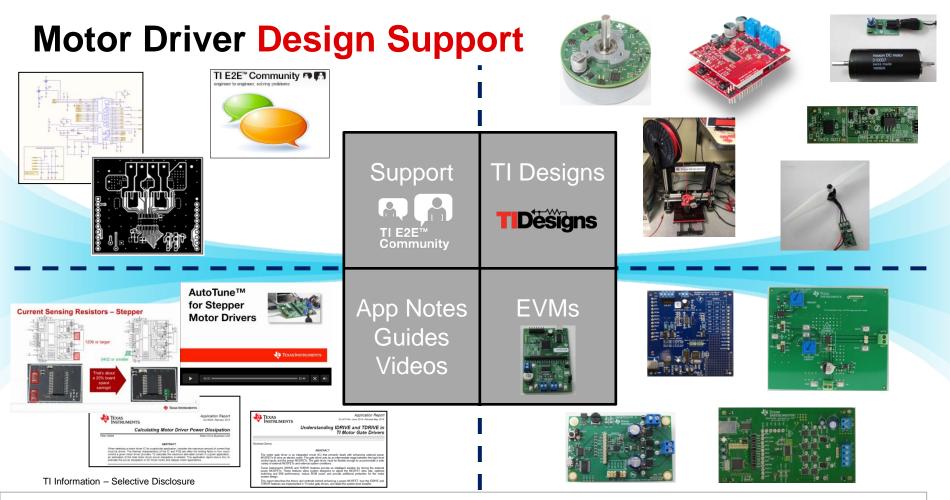
Designs

Comprehensive designs:

Schematic or block diagram

Test data

Bill of materials and design files that explain the circuit's function and performance


Benefits:

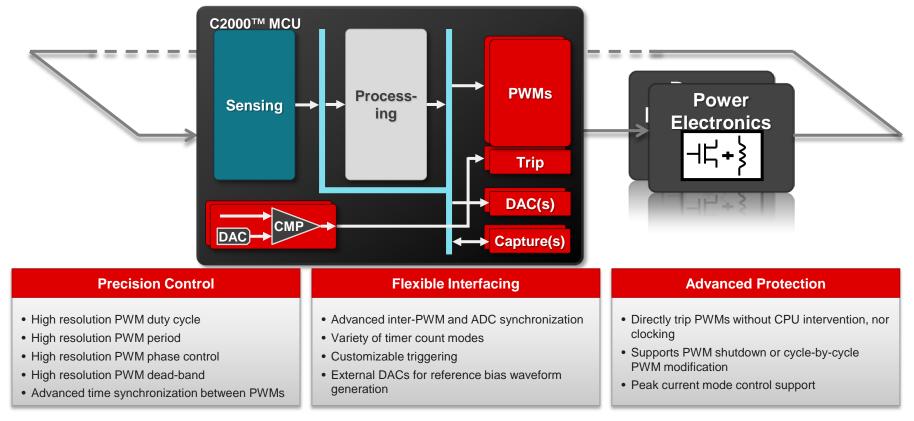
Expedites grounds-up designs Saves on development cost

Key Motor Designs:

- Sunroof ٠
- Power Tools ٠
- **HVAC Damper**
- Pump ٠
- Drones ٠
- ٠ 3D printer

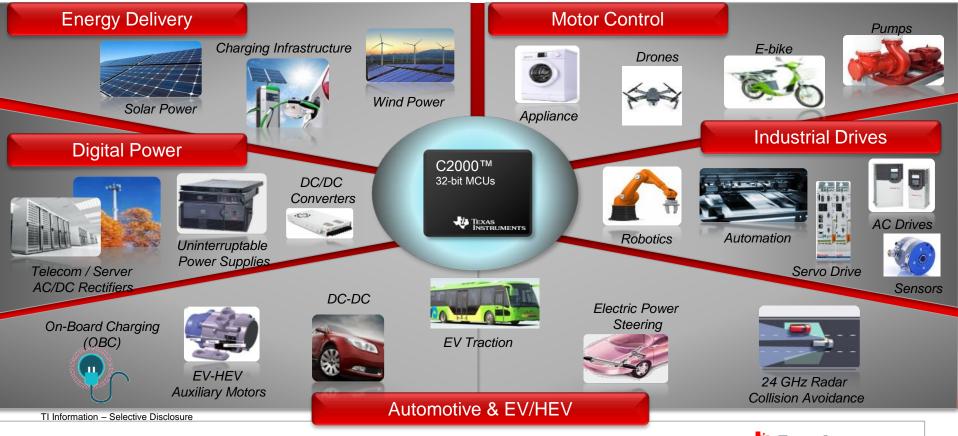
🔱 Texas Instruments

Enabling advanced motor control designs



Chris Clearman

Product marketing engineer, C2000[™] microcontrollers, Motor control


C2000[™] 32-bit MCU for Real Time Control

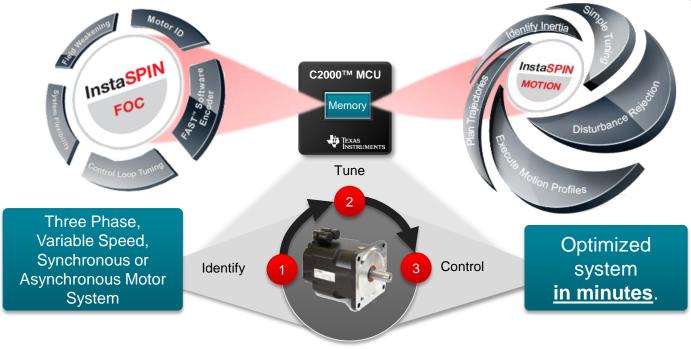
13

30 years of C2000 Real-time Control

14

C2000 3-ph Motor Control Applications

	PUMPS		COI	MPRESSORS
Automotive	Industrial/Consumer		Automotive	Industrial/Consumer
 Transmission Brake/Boost Oil Turbo Fuel/Water 	 Constant pressure Water/Waste/Chemical Spa/pool pump Geothermal pump Dishwashers 		 Refrigeration 	Air/ConRefrigeration
		LAUNDRY •Washers •Dryers		GH TORQUE
Automotive	VERS/FANS Industrial/Consumer		Transit	Conveyors
•Air/Con Blowers •Cooling Fan	•Respiratory •Vacuum •Fans •Air/Con Blowers •Exhaust		•Traction •eBike/Moped/Scooter •Off-highway Vehicles •Carts, Transport •Fork lifts •Wheel chairs	 Escalators Elevators Treadmill Tools AC Drive / Inverter Assembly Line


Two Development Paths

Expertise Included MotorWare InstaSPIN solutions	Customer Provides Expertise controISUITE motor_control library
Specific Piccolo devices	Any C2000 device
On-chip ROM libraries and source code	Source code modules
Motor & Inertia Identification	No motor commissioning
Unified sensorless observer	Multiple observers for different motors
Automatically tuned sensorless observer	User tuned sensorless observers
Automatically tuned current controller	User tuned; servo fast current loop option
Single variable high performance velocity/position controller (IS-MOTION)	User tuned standard PID controllers
Motion trajectory generation and state machine framework (IS-MOTION)	No advanced motion trajectory provided

InstaSPIN[™] Microcontrollers

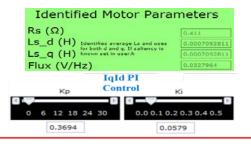
C2000[™] microcontrollers with embedded InstaSPIN[™] motion control software to identify, tune, and fully control three phase motors in minutes.

TI Information - Selective Disclosure

InstaSPIN

32-bit MCUs

Texas Instruments


Challenges of Sensorless 3-ph Motor Control

More details **SPRUHI9**

Customer Challenges	InstaSPIN Solutions
Sensorless observer relies on accurate knowledge of motor parameters	Off-line and Run-time motor parameter identification feature FAST observer relies on fewer parameters
Tuning observer is extremely challenging, multiple tuning sets over operating range	FAST observer self-tunes and works over entire operating range
Observers are not high performance	FAST observer reliable at much lower frequency, under dynamic transients, can recover from stalls, and can track an already moving motor even with inverter un-powered (flying-start)
Start-up from zero speed and transitions through zero speed are extremely challenging	Start-up from zero speed with 100% torque capability, angle convergence within 1 electrical cycle, stable through zero speed during CW/CCW movements
Tuning torque/current controllers challenging, especially when unsure of observer tuning	Torque/current controllers automatically set to stable values, user adjustable after performance testing
Tuning velocity controller challenging for inexperienced	Simple step response how-to provided, or advanced single-variable tuning available
Low fidelity speed estimates based on estimated angle	High fidelity speed estimate calculated independent of angle, with high speed angle compensation feature and unique torque estimate
InstaSPIN-FOC: Identify, tu	ine, and run best sensorless FOC in minutes
TI Information – Selective Disclosure	18

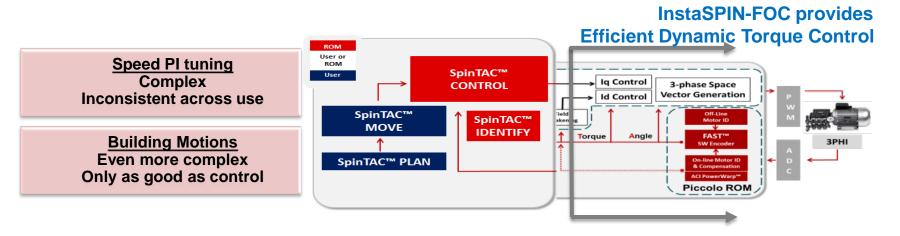
Instantly Enabling Superior 3-phase Motor & Motion Solutions

Motor Parameter ID Automatic FOC torque tuning Robust software encoder

InstaSPIN[™]-FOC

+ best [sensorless]+ sinewave [commutate]+ ideal [torque]

Simplified speed tuning Premium performance Motion & Planning


InstaSPIN[™]-MOTION

+ ideal [speed]
+ ideal [position]
+ on-chip [motion]
+ integrated [plan]

InstaSPIN-FOC to InstaSPIN-MOTION

InstaSPIN-MOTION

- Builds upon InstaSPIN-FOC (or use with sensors)
- SpinTAC[™] Suite component for high performance motion control

InstaSPIN-FOC Speed Control

- Initial PI gains are just a first starting point
- Does not incorporate real inertia of system
- Control requires
 - Tuning of 2-variable PI controller
 - "gain staging", different sets of tuning at various operating points
- Movements / Trajectories
 - Only offers constant fixed acceleration

SpinTAC™ Components

Account for mechanical inertia - Robust speed control - Simplified tuning

<mark>Identify</mark>: Measure Inertia

- Inertia is important for accurate control
- Short acceleration test to identify system inertia

Control

Maximum control, minimum effort

- Disturbance-rejecting controller
- Single variable to tune response
- Typically effective across full variable speed and load range

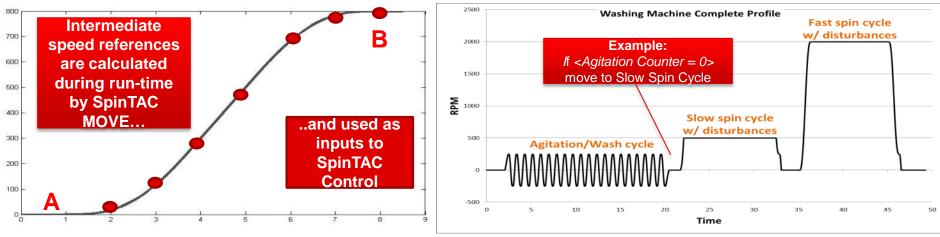
SpinTAC™ Components

Integrated Movement and Motion Design

Move:

Build Trajectories

- Select Motion Type for Speed A to B
- Define constraints (accel, jerk)
- Move generates the ideal curve


Plan:

Design Motion Sequence

• Define operating states and transitions

Texas Instruments

- Connect logic-based Moves
- Execute the motion sequence

InstaSPIN[™]-enabled, real-time controllers

TI's InstaSPIN three-phase motor control solutions are enabled by special libraries in the read-only memory (ROM) of Piccolo microcontrollers (MCUs) that allow you to create products with improved efficiency, performance, and reliability, while reducing development time from months to minutes. TI's InstaSPIN-enabled MCUs provide expertise to designers of sensorless (velocity and torque) or sensored (position, velocity and torque) motor control applications.

		InstaSPIN Solution	MHz	FPU	CLA Co- Processor	Motors	Flash (KB)	12b ADC Chs	PGA	CAN	QEP	USB	SPI	UART	I2C	Pins	Temp	
16x16 mm	F28069M	-MOTION			Y		256											
F2806x MCU	F28068M	-MOTION					256											
	F28069F	-FOC	90	Y	Y	1 or 2	256	16 or 12		1	1	1	2	2	1	100/ 80		
	F28068F	-FOC					256											
14x14 mm 14x14 mm 14x14 mm F2805x MCU	F28062F	-FOC					128										-40 to 105º C	
14x14 mm	<u>F28054M</u>	-MOTION					128										-40 to 125º C	
F2805x MCU	F28054F	-FOC	60			1 or 2	128	16	4	1	1		1	3	1	80	Q100	
	F28052M	-MOTION	00			1012	64	10	-					3		80		
9x9 mm	<u>F28052F</u>	-FOC					64											
F2802x MCU	<u>F28027F</u>	-FOC	60			1	64	13					1	1	1	48		
TINSTREMENTS	<u>F28026F</u>	-FOC	00				32	.0					'			40		

InstaSPIN-FOC & -MOTION Evaluation

Ş	\$299
	ψ233

•	DRV8312-69M- KIT TMDSCNCD28069MISO and 24V BLDC motor can add TMDSCND28054MISO TMDSCND28027F + JTAG emulator	15-50V 24V supply included 66.32V ADC Scale	3.5A continuous 6.5A peak 8.65A ADC Scale
-	LAUNCHXL- F28027F or F28069M + BOOSTXL-DRV8301 or BOOSTXL- DRV8305EVM	6-24V Input or 6-42V Input 26.3V or 44.3V ADC Scale	10A or 15A continuous 16A or 23.5A ADC Scale
	DRV8301-69M- KIT TMDSCNCD28069MISO can add TMDSCNCD28054MISO TMDSCNCD28027F + JTAG emulator	8-60V Input 66.32V ADC Scale	~40A continuous 40A peak 41.25A ADC Scale
9	TMDSHVMTRINS PIN TMDSCNCD28069MISO and TMDSCNCD28027F can add TMDSCNCD28054MISO	50-350V Input AC/DC supply included 409.6 ADC Scale	8A continuous 9A peak 9.945A ADC Scale

FREE

InstaSPIN™ projects

MotorWare[™] code infrastructure C code projects & Lab Guide

Labs teach how to use features

Object oriented APIs

• Intuitive drivers, modules & functions

Scalable support

- Projects easily scale across MCU family and inverter hardware
- Easy to add custom application code

CCSv5 Eclipse for code gen

Online forum support

24

InstaSPIN[™] Resources

www.ti.com/instaspin

Overview InstaSPIN-BLDC InstaSPIN-FOC InstaSPIN-MOTION Tools & Sof	ware Support & Community
--	--------------------------

InstaSPIN[™]-FOC and –MOTION

- Thorough Reference Manuals and <u>User's Guide</u>
- <u>MotorWare</u> projects, detailed lab documentation, and code examples provided
- Includes API information
- GUI and CCS

TI Information – Selective Disclosure

Training

MotorWare projects offer self paced workshop style sessions

sectors in the last the	in the same transmission	
In	staSPIN - FOC	
	Monthlipping of Name Personners and Tenning of Carton Long Cartonikes	Cantod Terring International Terring Accounting Terring Constructing Terring
Intertification Settings	The second secon	Identify Motor
	Hardware Parametaris An mulgation (n.c.) year by An mulgation (n) (n.c.) (n) An mulgation (n) (n) (n)	0
	Identified Motor Persnetters Re (0) Le (0) interesting the first Le (0) First Oversit Person Convert (Filederson	Proceed
and the second s	RF C11	Reset System

Thank you!

