Understanding and Calibrating the Offset and Gain for ADC Systenis TIPL 4202

TI Precision Labs - ADCs

Created by Dale Li, Art Kay
Presented by Peggy Liska

Offset Voltage Calculation

Device	PARAMETER		MIN	TYP	MAX	UNITS
LMP8481	$\mathrm{V}_{\text {OS }}$	Offset	-265	± 80	+265	$\mu \mathrm{~V}$
OPA320	$\mathrm{V}_{\text {OS }}$	Offset	-150	± 40	+150	$\mu \mathrm{~V}$
ADS8860	E_{O}	Offset	-2	± 0.8	+2	mV

Typical offset at ADC Input

$V_{O S T}=\sqrt{\left(20 \cdot V_{O S I N A}\right)^{2}+\left(V_{O S O P A}\right)^{2}+\left(V_{O S A D S}\right)^{2}}$
$V_{O S T}=\sqrt{(20 \cdot 80 \mu V)^{2}+(40 \mu V)^{2}+(1 m V)^{2}}$
$V_{O S T}= \pm 1.887 m V$

Gain Error Calculation

Device	PARAMETER		MIN	TYP	MAX	UNITS
R1	E_{R}	Tolerance	-0.1		+0.1	$\%$
LMP8481	E_{G}	Gain Error	-0.6		+0.6	$\%$
ADS8860	E_{G}	Gain Error	-0.01	± 0.005	+0.01	$\%$

Absolute Worse Case Gain Error

$V_{O S T}=E_{R 1}+E_{G U 1}+E_{G U 3}$
$V_{O S T}=0.1 \%+0.6 \%+0.01 \%= \pm 0.71 \%$

Statistical Worse Case Gain Error

$V_{O S T}=\sqrt{\left(E_{R 1}\right)^{2}+\left(E_{G U 1}\right)^{2}+\left(E_{G U 3}\right)^{2}}$
$V_{O S T}=\sqrt{(0.1 \%)^{2}+(0.6 \%)^{2}+(0.01 \%)^{2}}= \pm 0.608 \%$

$$
V_{O S T}=\sqrt{(0.1 \%)^{2}+(0.6 \%)^{2}+(0.01 \%)^{2}}= \pm 0.608 \%
$$

Offset and Gain Calibration: two test signals

Calibration Example

Offset calibration with short

Offset Error - Unipolar

Offset Error - Bipolar, or Unipolar with Differential input range

Automatic Offset Calibration: ADS7042

PARAMETER	MIN	TYP	MAX	UNIT
Uncalibrated Offset		± 12		LSB
Calibrated Offset	-3	± 0.5	+3	

Offset correction stored in register and automatically subtracted after each conversion

Error Sources that are difficult to Calibrate

- Temperature Drift
- Non-linearity
- Long term shift (Aging)
- Hysteresis
- Noise

Thanks for your time! Please try the quiz.

Quiz: Understanding and Calibrating the Offset and Gain for ADC System

TIPL 4202
TI Precision Labs - ADCs
Created by Art Kay

Quiz: Calibration

1. The goal is to calibrate the offset voltage for this system. Can we do this by applying 0 V to the input and measuring the output code? Note the ADC input range is 0 V to 5 V .

Quiz: Calibration

2. The goal is to calibrate the offset voltage for this system. Can we do this by applying OV to the input and measuring the output code? Note the ADC input range is -10.24 V to 10.24 V .

Quiz: Calibration

3. The goal is to calibrate the offset voltage for this system. Can we do this by applying OV to the input and measuring the output code? Note the ADC input range is -10.24 V to 10.24 V .

Quiz: Calibration

4. The circuit below has some switches that allow calibration signal to be applied to the system. The calibration signals are generated using a 5V LDO output and a voltage divider. What are some potential issues with this calibration method?

Quiz: Calibration

5. Below is a circuit that is scaled so that the ADC is at negative full scale for a system input of 0 V , and at positive full scale for a system input of 1 V . Calibration signals of 0.1 V and 0.9 V are applied to the input and the output codes are read. Use this information to create calibration coefficients. Also, what is the calibrated system input for an output code of 32000_{10}. Finally, what would the error have been without calibration.

Solutions

Quiz: Calibration

1. The goal is to calibrate the offset voltage for this system. Can we do this by applying 0 V to the input and measuring the output code? Note the ADC input range is 0 V to 5 V .

ANS: No. Look at OPA:

Applying 0 V to the amplifier will drive the its output towards 0 V . For this example the negative supply is -0.25 V this allows swing of the op amp to 0 V . Note the output swing and common mode aren't limited (see table below). Thus, the op amp is not the limitation.

PARAMETER OPA320	MIN	TYP	MAX	UNIT	
Vo	Voltage output swing from both rails		10	20	mV
Vcm	Common mode range	$(\mathrm{V}-)-0.1$		$(\mathrm{~V}+)+0.1$	V

Quiz: Calibration

1. Continued: The goal is to calibrate the offset voltage for this system. Can we do this by applying 0 V to the input and measuring the output code? Note the ADC input range is 0 V to 5 V .

ANS: No. Look at ADC:

The ADC cannot read any code less than 0000_{H}, but the offset is actually $-34_{\mathrm{H}}(-4 \mathrm{mV})$.

Applying OV to the ADC input should ideally give the offset of the data converter. This works if the offset is positive. However, the data converter can have a negative offset. In this case the data converter will read 0000_{H} as it cannot read below zero. Thus, this calibration scheme will not work as it cannot measure negative ADC offset.

PARAMETER OPA320	MIN	TYP	MAX	UNIT
Eo Offset Error	-4	± 1	+4	mV

Quiz: Calibration

2. The goal is to calibrate the offset voltage for this system. Can we do this by applying 0 V to the input and measuring the output code? Note the ADC input range is -10.24 V to 10.24 V .

ANS: No. Look at OPA:

Applying 0 V to the amplifier will drive the its output towards OV . For this example the negative supply is 0 V . The output swing limitation will prevent linear operation 15 mV from ground. Thus, the offset of this amplifier configuration cannot be measure by applying OV to the input.

PARAMETER OPA188	MIN	TYP	MAX	UNIT
Vo	Voltage output swing from both rails		5	15
Vcm	Common mode range	$(\mathrm{V}-)$		$(\mathrm{V}+)-1.5$

Quiz: Calibration

3. The goal is to calibrate the offset voltage for this system. Can we do this by applying OV to the input and measuring the output code? Note the ADC input range is -10.24 V to 10.24 V .

ANS: Yes
The amplifier has dual supply's, so applying 0 V to the input is well within the linear range. Thus the amplifiers offset can be directly measured by grounding the input. The ADC is a bipolar input, so applying 0 V to the input will allow reading of both positive an negative offsets without limitations.

Quiz: Calibration

4. The circuit below has some switches that allow calibration signal to be applied to the system. The calibration signals are generated using a 5V LDO output and a voltage divider. What are some potential issues with this calibration method?

ANS: Potential issues

1. The LDO 5 V output is used to generate the calibration voltages. This is unlikely to have the accuracy, drift, noise, and long term stability required for calibration.
2. The voltage dividers need to be very accurate low drift resistors.
3. Make sure error sources from the switches are considered. Switches have leakage, non-linear impedance, capacitance, and other nonidealities.

Quiz: Calibration

5. Calibrate given inputs and circuit. What is input voltage for $\operatorname{Code}=32000_{10}$. What would the error be without calibration?

Calibration Inputs and Codes

Vin $=0.9 \mathrm{~V}$ Code $=104895_{10}$

For Code $=32000_{10}$ What is $\operatorname{Vin}=$?
Vin $=0.1 \mathrm{~V}$
Code $=-104820_{10}$

$$
\text { vinatis vint }=\text { ? }
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{in} 1}:=0.1 \mathrm{~V} \quad \operatorname{Code}_{1}:=-104720 \\
& \mathrm{~V}_{\mathrm{in} 2}:=0.9 \mathrm{~V} \quad \operatorname{Code}_{2}:=104995 \\
& \text { Find Calibration Coeficients } \\
& \mathrm{m}_{\mathrm{m}}:=\frac{\operatorname{Code}_{2}-\operatorname{Code}_{1}}{\mathrm{~V}_{\mathrm{in} 2}-\mathrm{V}_{\mathrm{in} 1}}=2.621 \times 10^{5} \frac{1}{\mathrm{~V}} \\
& \mathrm{~b}_{\mathrm{m}}:=\operatorname{Code}_{1}-\mathrm{m}_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{in} 1}=-1.309 \times 10^{5}
\end{aligned}
$$

Use coeficients to find Vin for Code $=32000$

$$
\text { Code }:=32000
$$

$$
\mathrm{V}_{\mathrm{in}}:=\frac{\text { Code }-\mathrm{b}_{\mathrm{m}}}{\mathrm{~m}_{\mathrm{m}}}=0.621546 \mathrm{~V}
$$

Uncalibrated Vin Calculation

Assuming ideal gain and offset

LSB $=2 \cdot \frac{\mathrm{~V}_{\text {ref }}}{2^{18}} \quad$ From data sheet

$$
\mathrm{V}_{\mathrm{adc}}=\text { Code } \cdot \mathrm{LSB}
$$

$$
\mathrm{V}_{\mathrm{adc}}:=\text { Code } \cdot \frac{4.096 \mathrm{~V} \cdot 2}{2^{18}}=1.000000 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{adc}}=\mathrm{G}_{\mathrm{FDA}} \cdot \mathrm{G}_{\mathrm{OPA}} \cdot \mathrm{~V}_{\mathrm{in}}-\mathrm{G}_{\mathrm{FDA}} \cdot \frac{\mathrm{~V}_{\mathrm{ref}}}{2}
$$

$$
\mathrm{V}_{\mathrm{adc}}=(2) \cdot(4.096) \cdot \mathrm{V}_{\mathrm{in}}-(2) \cdot \frac{4.096 \mathrm{~V}}{2}
$$

$$
\mathrm{V}_{\text {in_no_cal }}:=\frac{\mathrm{V}_{\mathrm{adc}}}{(2 \cdot 4.096)}+0.5 \mathrm{~V}=0.622070 \mathrm{~V}
$$

$$
\text { Error }:=\frac{\mathrm{V}_{\text {in_no_cal }}-\mathrm{V}_{\text {in }}}{\mathrm{V}_{\text {in }}} \cdot 100=0.084 \quad \%
$$

Quiz: Calibration

5. Regarding the math on the previous slide. The transfer function to the FDA circuit is a little tricky and the math is given below.

