Introduction to SAR ADC Component Selection

 TIPL 4401TI Precision Labs - ADCs

Created by Art Kay
Presented by Peggy Liska

Agenda - Next several videos

1. SAR Operation Overview
2. Select the data converter
3. Use the Calculator to find amplifier and RC filter
4. Find the Op Amp
5. Verify the Op Amp Model
6. Building the SAR Model
7. Refine the Rfilt and Cfilt values
8. Final simulations
9. Measured Results
10. SAR Drive Calculator Algorithm

Agenda

1. SAR Operation Overview

2. Select the data converter
3. Use the Calculator to find amplifier and RC filter
4. Find the Op Amp
5. Verify the Op Amp Model
6. Building the SAR Model
7. Refine the Rfilt and Cfilt values
8. Final simulations
9. Measured Results
10. SAR Drive Calculator Algorithm

Acquisition phase

Conversion Phase

Overall Objective

- Find Rfilt and Cfilt charge bucket filter that will optimize settling
- Find amplifier with bandwidth sufficient for settling
- Achieve final settling of 0.5 LSB or better at end of tacq

Sample and Hold Capacitor Settling During Aquisition

Is the charge bucket filter required?

Advantage of low BW Amp

- Lower Iq
- Better Vos, Ib
- Lower cost
- Less sensitive to stability issues

Agenda

1. SAR Operation Overview
2. Select the data converter
3. Use the Calculator to find amplifier and RC filter
4. Find the Op Amp
5. Verify the Op Amp Model
6. Building the SAR Model
7. Refine the Rfilt and Cfilt values
8. Final simulations
9. Measured Results
10. SAR Drive Calculator Algorithm

Find the data converter

Find the data converter

Input Type
\square I2C
\square Microwire (Serial I/O)
\square Paralle
\square QSPI
\checkmark SPI
\square Serial

4 matching parts out of 535 total parts															
Compare	Part Number Filter by part number \quad Q	Resolution (Bits)	Sample Rate (max) (SPS)	\# Input Channels	Multi- Channel Configuration	Input	Input Range (Max) (V)	Interface	Integrated Features	Analog Voltage AVDD (Min) (V)	Analog Voltage AVDD (Max) (V)	Architecture	Rating	Operating Temperature Range (C)	Package Group
\square	ADS8866-16-Bit, 100-kSPS, Serial Interface, microPower, Miniature, Single-Ended Input, SAR Analog-to-Digital	16	100kSPS	1	N/A	0	5	SPI	DaisyChainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	vSSOP, vson
\square	ADS8864-16-Bit, 400-kSPS, Serial Interface, microPower, Miniature, Single-Ended Input, SAR ADC	16	400kSPS	1	N/A	0	5	SPI	DaisyChainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	VSON, VSSOP
\square	ADS8862-16-Bit, 680-kSPS, Serial Interface, uPower, Miniature, Single-Ended Differentia nnut SAR ADC	16	680kSPS	1	N/A	0	5	SPI	Daisy- Chainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	VSON, VSSOP
\square	ADS8860-16 bit 1 MSPS, Serial, Pseudo-Differential Input, Micro Power, Miniature, SAR ADC	16	1MSPS	1	N/A	0	5	SPI	Daisy- Chainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	$\begin{aligned} & \text { vsǒe } \\ & \text { vssop } \end{aligned}$

ADS8860
Choose the data converter with the highest sample rate from this group

Agenda

1. SAR Operation Overview
2. Select the data converter
3. Use the Calculator to find amplifier and RC filter
4. Find the Op Amp
5. Verify the Op Amp Model
6. Building the SAR Model
7. Refine the Rfilt and Cfilt values
8. Final simulations
9. Measured Results
10. SAR Drive Calculator Algorithm

Information needed from the data sheet

\(\left.$$
\begin{array}{l|l|}\hline \text { Full Scale } \\
\text { Range (FSR) }\end{array}
$$ \begin{array}{l}The range of voltage that is applied to the converter for valid conversions.

Typically this is Vref or a multiple of Vref.\end{array}\right]\)| The number of bits used to represent the digital equivalent of the equivalent |
| :--- |
| analog signal. In this example we use a 16 bit converter that has 2^{26} or 65536 |
| codes. |

Example: Full Scale Range, Resolution, $\mathrm{C}_{\mathrm{sh}}, \mathbf{R}_{\mathrm{sh}}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT					
Full-scale input span ${ }^{(1)}$	AINP - AINN	0		$\mathrm{V}_{\text {REF }}$	V
Operating input range ${ }^{(1)}$	AINP	-0.1		$V_{\text {REF }}-0.1$	V
	AINN	-0.1		+0.1	V
$\mathrm{C}_{1} \quad$ Input capacitance	AINP and AINN terminal to GND		59		pF
Input leakage current	During acquisition for dc input		5		nA
SYSTEM PERFORMANCE					
Resolution			r^{-16}		Bits

$\mathrm{C}_{\text {sh }}$ and $\mathrm{R}_{\text {sh }}$ can usually be found in the equivalent circuit.

Note: $\mathrm{C}_{\boldsymbol{\prime}}$ from the table

$$
\mathrm{C}_{1}=55 \mathrm{pF}+4 \mathrm{pF}
$$

Full Scale Range and resolution

If the data sheet doesn't provide $\mathbf{R}_{\text {sh }}$

$$
\begin{aligned}
& R_{s h} \approx \frac{t_{a c q_{-} \min }}{100 \cdot C_{s h}} \\
& R_{s h} \approx \frac{290 n s}{100 \cdot 55 p F}=53 \Omega
\end{aligned}
$$

For our example: acquisition time

Conversion time set by internal clock. The maximum time for conversion is 710ns.

		PARAMETER	MIN	TYP
$\mathrm{t}_{\mathrm{ACQ}}$	Acquisition time	MAX	UNIT	
$\mathrm{t}_{\text {conv }}$	Conversion time	290		ns

We are running at maximum throughput (1 MHz)
$1 / \mathrm{f}_{\text {sample }}=\mathrm{t}_{\text {conv-max }}+\mathrm{t}_{\text {aca-min }}=710 \mathrm{~ns}+290 \mathrm{~ns}=1 \mu \mathrm{~s}$, or $\mathrm{f}_{\text {sample }}=1 \mathrm{MHz}$
For cases where you aren't running at maximum throughput (e.g. 500 kHz)
$\mathrm{t}_{\text {acq }}=1 / \mathrm{f}_{\text {sample }}-\mathrm{t}_{\text {conv-max }}=(1 / 500 \mathrm{kHz})-710 \mathrm{~ns}=1290 \mathrm{~ns}$

Run the "ADC SAR Drive" tool: ADS8860 Example

Agenda - next video...

1. SAR Operation Overview
2. Select the data converter
3. Use the Calculator to find amplifier and RC filter
4. Find the Op Amp
5. Verify the Op Amp Model
6. Building the SAR Model
7. Refine the Rfilt and Cfilt values
8. Final simulations
9. Measured Results
10. SAR Drive Calculator Algorithm

Thanks for your time! Please try the quiz.

Quiz: Introduction to SAR ADC Component Selection

 TIPL 4401TI Precision Labs - ADCs

Created by Art Kay

Quiz: Introduction to SAR ADC Component Selection

1. The SAR data converter throughput is set by the \qquad .
a) Acquisition and communications phase.
b) Reference and conversion phase.
c) Acquisition and conversion phase.
d) None of the above.
2. SAR data converters with short acquisition time will need a driver amplifier with \qquad .
a) High bandwidth.
b) High slew rate.
c) Good output swing.
d) Low noise.

Quiz: Introduction to SAR ADC Component Selection

3. The data sheet for the input circuit below does not specify Rsh. What is a good estimate for Rsh? Assume $\mathrm{t}_{\text {acq_min }}=150 \mathrm{~ns}$.
a) 25 ohms.
b) 50 ohms.
c) 75 ohms .
d) 100 ohms.

Quiz: Introduction to SAR ADC Component Selection

4. Use the calculator to find an amplifier and RC range for a converter with the following specifications: ADS7056, Single Ended, 14 bit, $2.5 \mathrm{Msps}, \mathrm{t}_{\text {acq_min }}=95 \mathrm{~ns}, \mathrm{FSR}=3.3 \mathrm{~V}$, and Csh $=16 p F$.

Solutions

Quiz: Introduction to SAR ADC Component Selection

1. The SAR data converter throughput is set by the \qquad .
a) Acquisition and communications phase.
b) Reference and conversion phase.
c) Acquisition and conversion phase.
d) None of the above.
2. SAR data converters with short acquisition time will need a driver amplifier with \qquad .
a) High bandwidth.
b) High slew rate.
c) Good output swing.
d) Low noise.

Quiz: Introduction to SAR ADC Component Selection

3. The data sheet for the input circuit below does not specify Rsh. What is a good estimate for Rsh? Assume $\mathrm{t}_{\text {acq_min }}=150 \mathrm{~ns}$.
a) 25 ohms.
b) 50 ohms.
c) 750 hms .
d) 100 ohms.

Quiz: Introduction to SAR ADC Component Selection

4. Use the calculator to find an amplifier and RC range for a converter with the following specifications: ADS7056, Single Ended, 14 bit, $2.5 \mathrm{Msps}, \mathrm{t}_{\text {acq_min }}=95 \mathrm{~ns}, \mathrm{FSR}=3.3 \mathrm{~V}$, and Csh $=16 \mathrm{pF}$.

