Created by Art Kay Presented by Peggy Liska

Agenda – Next several videos

- **1. SAR Operation Overview**
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Agenda

- **1. SAR Operation Overview**
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Acquisition phase

Sample and Hold Capacitor Settling During Aquisition

Acquisition Time

Conversion Phase

Overall Objective

- Find Rfilt and Cfilt charge bucket filter that will optimize settling
- Find amplifier with bandwidth sufficient for settling
- Achieve final settling of 0.5LSB or better at end of tacq

Sample and Hold Capacitor Settling During Aquisition

Acquisition Time

Is the charge bucket filter required?

Advantage of low BW Amp Less sensitive to stability

Agenda

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Find the data converter

Find the data converter								Interface				OR T				
4 matching p	<pre># Input Channels ≥ 1 ≤ 1 View 42 parts </pre>		6	✓ Inpu ≥ 0.0 Vie	t Range (M)195 ew 17 part	ax) (V ≤ [s	5	^			Micro Parall QSPI SPI Serial	wire (Ser el parts	ial I/O)		 □ Differe □ Pseude ✓ Single- View 4 p 	ntial p-Differer Ended arts
Compare	Part Number Filter by part number Q	Resolution (Bits)	Sample Rate (max) (SPS)	# Input Channels	Multi- Channel Configuration	Input Range (Min) (V)	Input Range (Max) (V)	Interface	Integrated Features	Analog Voltage AVDD (Min) (V)	Analog Voltage AVDD (Max) (V)	Architecture	Rating	Operating Temperature Range (C)	Package Group	
	ADS8866 - 16-Bit, 100-kSPS, Serial Interface, microPower, Miniature, Single-Ended Input, SAR Analog-to-Digital	16	100kSPS	1	N/A	0	5	SPI	Daisy- Chainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	VSSOP, VSON	
	ADS8864 - 16-Bit, 400-kSPS, Serial Interface, microPower, Miniature, Single-Ended Input, SAR ADC	16	400kSPS	1	N/A	0	5	SPI	Daisy- Chainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	VSON, VSSOP	A
	ADS8862 - 16-Bit, 680-kSPS, Serial Interface, uPower, Miniature, Single-Ended, Differential Input SAR ADC	16	680kSPS	1	N/A	0	5	SPI	Daisy- Chainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	VSON, VSSOP	CI wi
	ADS8860 - 16 bit 1 MSPS, Serial, Pseudo-Differential Input, Micro Power, Miniature, SAR ADC	16	1MSPS	1	N/A	0	5	SPI	Daisy- Chainable, Oscillator	2.7	3.6	SAR	Catalog	-40 to 85	VSOL VSSOP	fro

DS8860

hoose the data converter ith the highest sample rate om this group

Agenda

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Information needed from the data sheet

Full Scale Range (FSR)	The range of voltage that is applied to the converter for valid cor Typically this is Vref or a multiple of Vref.
Resolution	The number of bits used to represent the digital equivalent of the analog signal. In this example we use a 16 bit converter that ha codes.
C _{sh}	Sample and Hold capacitance. Sometimes called Cin. Typically and 100pF.
R _{sh}	On-resistance for sample and hold switch. Typically between 10 ohms. Normally, this information is in the data sheet equivalent
t _{acq}	Acquisition time. This is duration that the sample and hold switch longer acquisition time makes it easer to settle. The data sheet minimum acquisition time that corresponds to the maximum thro (samples / second).

nversions.

e equivalent as 2¹⁶ or 65536

between 10pF

) ohms and 100 circuit.

h is closed. A provides a pughput

Example: Full Scale Range, Resolution, C_{sh}, R_{sh}

PARAMETER		TEST CONDITIONS	MIN	ТҮ
ANA	LOG INPUT		I	
	Full-scale input span ⁽¹⁾	AINP – AINN	0	
Operating input range ⁽¹⁾	AINP	-0.1		
	AINN	-0.1		
CI	Input capacitance	AINP and AINN terminal to GND		
	Input leakage current	During acquisition for dc input		
SYS	TEM PERFORMANCE	•		
	Resolution			<u> </u>

Full Scale Range and resolution

If the data sheet doesn't provide R_{sh}

$100 \cdot C_{sh}$ $= 53\Omega$

For our example: acquisition time

We are running at maximum throughput (1MHz) $1/f_{sample} = t_{conv-max} + t_{acq-min} = 710ns + 290ns = 1\mu s$, or $f_{sample} = 1MHz$

For cases where you aren't running at maximum throughput (e.g. 500kHz) $t_{acq} = 1/f_{sample} - t_{conv-max} = (1/500 \text{kHz}) - 710 \text{ns} = 1290 \text{ns}$

Conversion time set by internal clock. The maximum time for conversion is

TYP	MAX	UNIT
		ns
	710	ns

Run the "ADC SAR Drive" tool: ADS8860 Example

http://www.ti.com/tool/analog-engineer-calc

Agenda – next video...

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Thanks for your time! Please try the quiz.

Created by Art Kay

- The SAR data converter throughput is set by the ______. 1.
 - Acquisition and communications phase. a)
 - b) Reference and conversion phase.
 - Acquisition and conversion phase. C)
 - None of the above. d)
- 2. SAR data converters with short acquisition time will need a driver amplifier with _____.
 - High bandwidth. a)
 - High slew rate. b)
 - Good output swing. C)
 - Low noise. d)

- 3. The data sheet for the input circuit below does not specify Rsh. What is a good estimate for Rsh? Assume $t_{acq min} = 150$ ns.
 - 25 ohms. a)
 - b) 50 ohms.
 - 75 ohms. C)
 - 100 ohms. d)

4. Use the calculator to find an amplifier and RC range for a converter with the following specifications: ADS7056, Single Ended, 14 bit, 2.5Msps, $t_{acq min} = 95$ ns, FSR = 3.3V, and Csh = 16pF.

4

Solutions

- The SAR data converter throughput is set by the ______. 1.
 - Acquisition and communications phase. a)
 - b) Reference and conversion phase.
 - Acquisition and conversion phase. C)
 - None of the above. d)
- 2. SAR data converters with short acquisition time will need a driver amplifier with _____.
 - High bandwidth. a)
 - High slew rate. b)
 - Good output swing. C)
 - Low noise. d)

- 3. The data sheet for the input circuit below does not specify Rsh. What is a good estimate for Rsh? Assume $t_{acq min} = 150$ ns.
 - 25 ohms. a)
 - b) 50 ohms.
 - 75 ohms. C)
 - 100 ohms. d)

4. Use the calculator to find an amplifier and RC range for a converter with the following specifications: ADS7056, Single Ended, 14 bit, 2.5Msps, $t_{acd min} = 95$ ns, FSR = 3.3V, and Csh = 16pF.

