Optimizing Wide Vin Designs with LDOs

June 2017

Jose Gonzalez
Product Marketing Engineer for TI's Linear Regulators & LDOs

Agenda

- Common Design Requirements & Applications
- Design Challenges
- TI Solutions and Tools
- Summary
- Design Tools and Support

Why use wide V_{IN} LDOs?

Wide V _{IN} Capability	System Benefit
Increased robustness against input transients	Eliminates the need for external transient protection components, saves PCB area
Ability to convert high VIN to low VOUT	Eliminates two-stage conversions, saves PCB area
Low noise, low EMI solutions	Eliminates external filtering, improves quality of data signals
Stackable devices with current sharing	Enables re-use across multiple applications

Where do we need Wide V_{IN} LDOs?

Rugged Industrial Equipment

- 40V+ Wide V_{IN} operation for 24V backplanes
- Isolated bias power for PLCs and motor drives
- Low noise for precision circuits and sensing

Advanced Automotive Electronics

- 42V/60V Wide V_{IN} rating to survive load dump
- >2Mhz operation to reduce radio interference
- Low standby / shutdown I_O to reduce batter drain
- Ultra-small IC packaging to reduce PCB footprint

Sensitive Communications Systems

- 75V/100V Wide V_{IN} operation for 48V backplanes
- High-performance/high-current power rails
- High PSRR and low-noise regulators for powering RF circuits

Design Challenges

Design Challenges: Wide VIN

Voltage Spikes & Increases

- Voltage spikes may occur due to shorts between rails
- Variable power demand coming from inductive loads:

$$V = L \frac{\Delta I}{\Delta t}$$

Cold-Crank and Battery Voltage

- Battery voltage drops significantly due to starter or high current pull
- Voltage drop may affect LDO regulation

*See blog: LDO Basics: Dropout

Design Challenges: Adjusting for swings

Dropout Voltage vs. Output Current

Ensure V_{IN} is ideal for regulation

- Maintain a safe margin between $V_{(INMAX)}$ and $V_{IN(ABSMAX)}$
- Make sure VIN is at least V_{IN} + V_{DO(MAX)}

Pick LDOs with very low V_{DO}

- Enables low-voltage regulation even in cold-crank conditions
- i.e. V_{IN} is 12V nominal, but can be 4V in cold-crank. TPS7B67-Q1 can still regulate to 3.3V

*See blog: LDO Basics: Dropout

Design Challenges: Current Limit

Current limit helps protect the LDO and sensitive electronics

• Selecting an LDO with internal protection from short circuits and power surges

- LDOs feature internal current limits that range from low to high current
- The internal reference allows for a margin of operation, but it shuts down regulation whenever I_{OUT} >= I_{LIMIT}
- LDOs are offered with two main current limit topologies: brick wall and fold-back current limiting

*See blog: LDO Basics: Current Limit

Design Challenges: Brick wall Current Limit

 $V_{OUT} = I_{LIMIT} \times R_{LOAD}$

During brick wall current limiting

- The upper boundary is defined and the LDO supplies current incrementally until the limit current limit is reached
- Regulation will continue this operation and dissipate power, as long as the thermal resistance (θ_{JA}) allows for healthy power dissipation
- Once V_{OUT} goes too low and the thermal limit is reached, thermal shutdown will turn off the device in order to protect
 it from permanent damage

^{*}See blog: LDO Basics: Current Limit

Design Challenges: Fold-back Current Limit

During fold-back current limiting

- the main goal of fold-back current is to limit the total power dissipation by reducing the output current limit linearly while V_{OUT} decreases and V_{IN} remains steady
- Additional protection is given to devices that are sensitive to temperature increases but can complicate the overall design

*See blog: LDO Basics: Current Limit

Design Challenges: Power Dissipation

Power Dissipation is high for wide V_{IN}

- LDOs dissipate power into heat proportional to the voltage drop from V_{IN} to V_{OUT}
- Heat is concentrated on the board triggering thermal shutdown for other devices

Low $\mathbf{I}_{\mathbf{Q}}$ and EN can help reduce heat dissipation and improve efficiency

- During no-load conditions LDO power consumption becomes exponentially lower
- The LDO can also be used as a switch powering lcs only when needed

Load/Current sharing can help reduce board heat

- Using two LDOs in parallel can effectively split current and losses
- Heat is better distributed and dropout is lower

$$Total P_{Loss} = ((V_{IN} - V_{OUT})x I_{OUT}) + (I_Q x V_{IN})$$

$$P_{LOSS} = I_{SHDN} \times V_{IN}$$

*See blog: <u>Double your current with current-sharing dual LDOs</u>

Design Challenges: Thermal Shutdown

Internal thermal protection saves the LDO

- Choosing an LDO with internal thermal protection helps disable outputs in unusually high demand conditions
- Thermal protection disables the output when the junction temperature rises to approximately 170°C
- When the device cools it will re-enable
- The junction temperature is dependent on the total effect of power dissipated & ambient temperature:

$$T_I = (\emptyset_{IA} x PD) + TA$$

• It is recommended to keep an additional margin to allow for thermal hysteresis to reduce any unwanted shutdowns

Design Challenges: Thermal Layout

A proper layout will improve the LDOs heat, noise and PSRR performance

- It is recommended to separate ground planes for IN and OUT to improve noise, PSRR and transient response
- Save room between the LDO and other components to allow better heat dissipation
- Generate as large a GND plane as allowable on the top and bottom layers, especially right near the
- Package
- Gather the same functional pins together in die design, such as for GND, PVIN, POUT

*See app report: A Guide to Board Layout for Best Thermal

Design Tools: WEBENCH® Thermal Simulator

TI's WEBENCH® enables for quick and easy simulation!

- Design optimization
- Signal simulation
- BOM and schematic editing tools
- Thermal simulation

Design Tools: WEBENCH® Thermal Simulator

LDO Resources: Tl.com, WEBENCH® and More

Find it all on the LDO landing page: ti.com/ldo

- Read our LDO Basics blogs to learn more about enhanced features of our LDOs
- •Follow our upcoming LDO training modules for more information

Design

 Leverage our <u>WEBENCH®</u> designer tool, our TI Designs and app notes to improve your system

Select

- Download our latest selection guides and Quick Reference Guide to help you find our latest and greatest LDOs
- •Go to our <u>featured products</u> tab where we showcase solutions for LDO design challenges and more

Evaluate & select

