

Fully Differential Amplifiers – 4

TIPL 2024

TI Precision Labs: Op Amps

Prepared and Presented by Samir Cherian

Noise Analysis

$$e_{no} = \sqrt{(e_{ni} \cdot NG)^2 + 2(i_{ni} \cdot R_F)^2 + 2(4kTR_F) + 2(4kTR_G \cdot (\frac{R_F}{R_G})^2)}$$
$$e_{no} = \sqrt{(e_{ni} \cdot NG)^2 + 2(i_{ni} \cdot R_F)^2 + 2(4kTR_F \cdot NG)}$$
NG is the Noise Gain
Resistor Noise Power = 4kTR

Using large resistors with high-speed amplifiers

F

Recommended $R_F = 402 \Omega$

- Voltage noise, $E_N = 2.2 \text{ nV}/\sqrt{Hz}$
- Current noise, $I_{BN} = 1.9 \text{ pA}/\sqrt{\text{Hz}}$
- Input offset current, $I_{BOS} = 150 \text{ nA}$

- Increasing R_F and R_G will result in larger noise contributions from the resistors compared to the amplifier.
- The current noise will be multiplied by R_F and will increase the overall system noise.
- Increased output offset voltage due to I_{BOS}.
- C_{DIFF} will introduce a noise gain zero which will reduce the phase margin and could cause oscillation. Large resistors lower the frequency of the zero within the amplifiers bandwidth

Effect of the noise gain zero

Ę

Ţ

Feedback compensation

Ţ

Input Terminations

- Matched termination is needed when the PCB trace > $\lambda/8$, where $\lambda = 300/f_{MHZ}$
- E.g., the wavelength of a 600-MHz signal is: $\lambda = 300/f_{MHz} = 300/600 = 0.5 \text{ m} = 19.7 \text{ in}.$

A cable or PCB trace is a transmission line if it's longer than 0.5/8 = 0.0625m or

$${}^{2}_{T} - R_{T} * \frac{2R_{S}(2R_{F} + \frac{R_{S}}{2}A_{V}^{2})}{2R_{F}(2 + A_{V}) - R_{S}A_{V}(4 + A_{V})} - \frac{2R_{F}R_{S}^{2}A_{V}}{2R_{F}(2 + A_{V}) - R_{S}AV(4 + A_{V})} = 0$$

Excel calculator for single-ended to differential matched termination configuration

<u>Solving for Rt and then Rg1 and Rg2 in the single to differential FDA configuration with input impedance</u>							
matching.							
ENTER ONLY THE RED BOLD FIELDS							
MAIN RESULTS IN BLUE BOLD FIELDS							
Enter Source Rs	50	Ω	This is single and ad input to differential output			output	
Enter Feedback Rf	402	Ω	design with Rf selected and other elements solved				output
Maximum gain	14.32502263	V/V					
Must enter a gain < this for valid solution					<i>J</i> 07.		
Enter Target Gain	5	V/V	13.9794	dB			

<u>Now get standard 1% values</u>				
Required Rt value	79.65389444	Ω	78.7	
Closest 1% value	80.6	Ω	80.6	
Required Rg1 value	68.07085543	Ω	66.5	
Closest 1% value	68.1	Ω	68.1	
		-		
Required Rg2 value	98.78875048	Ω	97.6	
Closest 1% value	97.6	Ω	100	
Snapping Rf to closest 1%	402	Ω	402	
Closest 1%	402	Ω	412	

Some example FDAs from Texas Instruments

F

Product Name	l _Q (mA)	GBP (MHz)	Slew-Rate (V/μs)	Voltage Noise (nV/VHz)	Key Features
THS4531A	0.25	27	190	10	Low Power.
THS4551	1.35	135	220	3.3	Low Noise and High Precision.
THS4541	10.1	850	1500	2.2	Wide Bandwidth with Precision.
THS4509	37.7	3000	6600	1.9	
LMH5401	55	6200	17500	1.25	Ultra-wide bandwidth.
LMH3401	55	7000	18000	1.4	Fixed Gain with integrated resistors.
LMH6552	20.4	1500	3800	1.1	± 10V supplies. Current Feedback topology.
OPA1632	14	180	50	1.3	± 30V supplies and low-noise. Optimized for audio.

http://www.ti.com/lsds/ti/amplifiers/op-amps/fully-differential-amplifiers-overview.page

Digital Variable-Gain Amplifiers (DVGA)

- Wide gain range can be programmed through SPI or parallel-mode.
- Single-ended OR Differential Input to Differential Output.
- Input signals can be AC or DC coupled.
- Commonly used in Test & Measurement and Communications.

Product Name	l _Q (mA)	Gain Range	Noise Figure	Key Features
LMH6401	69	-6dB to 26dB	7.7 dB @ 100 Ω	4.5 GHz BW @ A _v = 26 dB
LMH6881	100	6dB to 26dB	9.7 dB @ 100 Ω	2.4 GHz BW @ A_v = 26 dB. SE or DIFF I/P
LMH6517	80	-9.5dB to 22dB	5.5 dB @ 100 Ω	1.2 GHz BW @ A _v = 22 dB
LMH6521	112.5	-5.5dB to 26dB	7.3 dB @ 200 Ω	1.2 GHz @ 0dB Gain. AC Coupled Only

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

Fully Differential Amplifiers - 4

Exercises

TI Precision Labs: Op Amps

Questions

- 1. The 1.9 GHz THS4509 fully-differential amplifier is configured in a signal gain of 2V/V (6dB).
 - a) What is the output noise contribution due to the amplifiers inherent voltage noise?
 - b) How large should the feedback resistor R_F be for the total current noise contribution to be equal to the total amplifier voltage noise?

2. For an FDA with the specifications and configuration shown below, at what frequency is the noise gain zero located?

Parameter	Specification	Units
Feedback Resistance, R _F	10	kΩ
Signal Gain	5	V/V
Amplifier differential input capacitance, C _{AMP_D}	2	pF
Amplifier common-mode input capacitance, C_{AMP_C}	1	pF
Parasitic PCB capacitance at each amplifier input, C_{PCB}	0.5	pF

- 3. An FDA is configured as a differential in to differential out amplifier. It is driven by a differential source with 50Ω source impedance (on each side).
 - a) If the amplifier is configured in a gain of 10V/V, what is the value of R_T , R_G and R_F ?
 - b) If the amplifier is in a gain of 10V/V and $R_F = 10 \text{ k}\Omega$ what is the value of R_T and R_G ?

Answers

- 1. The 1.9 GHz THS4509 fully-differential amplifier is configured in a signal gain of 2V/V (6dB).
 - a) What is the output noise contribution due to the amplifiers inherent voltage noise?
 - b) How large should the feedback resistor R_F be for the total current noise contribution to be equal to the total amplifier voltage noise?

a) The THS4509 noise specification from the datasheet is shown below:

Parameter	Typical value	Unit
Input voltage noise	1.9	nV/√Hz
Input current noise	2.2	pA/√Hz

Since the amplifier is in a signal gain of 2V/V, its noise gain is 3V/V and the total output noise is = $3 \times 1.9 \text{ nV}/\sqrt{\text{Hz}} = 5.7 \text{ nV}/\sqrt{\text{Hz}}$

b) The output current noise contribution for each side = $I_{NOISE} \times R_F$. Since the noise on each side is uncorrelated the total noise at the output = $\sqrt{2} \times I_{NOISE} \times R_F$.

The value of feedback resistance that would therefore make the total current noise contribution equal the amplifiers voltage noise contribution is given by:

$$\sqrt{2} \times 2.2 \text{ pA} / \sqrt{\text{Hz}} \times \text{R}_{\text{F}} = 5.7 \text{ nV} / \sqrt{\text{Hz}}$$
$$\Rightarrow \text{R}_{\text{F}} = \frac{5.7 \text{ nV} / \sqrt{\text{Hz}}}{\sqrt{2} \times 2.2 \text{ pA} / \sqrt{\text{Hz}}} = 1832 \Omega$$

2. For an FDA with the specifications and configuration shown below, at what frequency is the

noise gain zero located?

Parameter	Specification	Units
Feedback Resistance, R _F	10	kΩ
Signal Gain	5	V/V
Amplifier differential input capacitance, CAMP_D	2	pF
Amplifier common-mode input capacitance, C_{AMP_C}	1	pF
Parasitic PCB capacitance at each amplifier input, C_{PCB}	0.5	pF

The zero is located at :
$$\frac{1}{2\pi (R_F || R_G) (2C_{DIFF_IN} + C_{CM_IN})}$$

With $R_F = 10k\Omega$ and Gain = 5V/V, $R_G = 2k\Omega$.

The total common-mode capacitance = $C_{AMP_C} + C_{PCB} = 1 \text{ pF} + 0.5 \text{ pF} = 1.5 \text{ pF}$ The noise gain zero is located at: $\frac{1}{2\pi (10k\Omega || 2k\Omega)(2 \cdot 2pF + 1.5pF)} = 17.4 \text{ MHz}$

- 3. An FDA is configured as a differential in to differential out amplifier. It is driven by a differential source with 50Ω source impedance (on each side).
 - a) If the amplifier is configured in a gain of 10V/V, what is the value of R_T , R_G and R_F ?
 - b) If the amplifier is in a gain of 10V/V and $R_F = 10 \text{ k}\Omega$ what is the value of R_T and R_G ?
 - a) The complicated equation shown in the training video is only needed in case of a singleended to differential configuration. In a differential in to differential out configuration, the amplifiers input pins are fixed and therefore independent of the amplifiers gain configuration.

Therefore in this case $R_G = 50 \Omega$ and R_T can be left open. Since the signal gain is 10 V/V - $R_F = 50 \Omega \times 10 V/V = 500 \Omega$

- b) If the amplifier is in a gain of 10V/V and $R_F = 10 \text{ k}\Omega$ what is the value of R_T and R_G ?
- b) In this case the value of the feedback resistance is fixed so we have to work backwards. With $R_F = 10 \ k\Omega$ and a signal gain of 10 V/V - $R_G = 10 \ k\Omega / 10 \ V/V = 1 \ k\Omega$

The load seen by the source is therefore 1 k Ω . In order for the source to see a load of 50 Ω set the value of R_T such that (R_T || R_G) = 50 Ω .

$$\frac{R_{T} \times 1 \ k\Omega}{R_{T} + 1 \ k\Omega} = 50 \ \Omega$$
$$\Rightarrow R_{T} = 52.6 \ \Omega$$

