Crossover Distortion Hands-on Experiment

TI Precision Labs – ADCs

by Art Kay and Dale Li

Required/Recommended Equipment

- Calculation
 - Simple calculation using OPA320 and OPA316 Data Sheet
- Simulation
 - No simulation in this experiment.
- Measurement
 - PLABS-SAR-EVM-PDK
 - <u>http://www.ti.com/tool/plabs-sar-evm-pdk</u>
 - Download EVM software and purchase EVM

Op Amp with and without input Crossover distortion

l	ТҮР	MAX	UNIT		
)-0.2		(V+)+0.2	V		
76	90		dB		
65	80				

I	ТҮР	MAX	UNIT
)-0.1		(V+)+0.1	V
00	114		dB

Connect the hardware

Start & Setup the PLABS-SAR EVM Software

Power-on LEDs illuminate

Setup the PSI

11. Click to Turn on output.

Capture the waveform and zoom in.

13. This is a sine wave output,but the time scale doesn't letyou see the wave. Right clickan drag to zoom in.

Capture the waveform and zoom in.

14. Select "Fit Code to range" to show the full scale range.

Capture the waveform and zoom in.

15. Now you can see that the full scale range is displayed (5V) in this example.

Frequency Domain Results

20. Press "Mark Harmonics" to zoom in on harmonics.

19. Frequency domain display

Mark Harmonics

21. Zoom in on harmonics marked H2 ...H10

23. Minimize or maximize PSI controls as needed.

Enter Vin, Vcm to compare OPA316 and OPA320

fin = 2kHz, fsamp = 500kHz Crossover region at 3.8V on OPA316								
PSI Signal Settings		Calculate Min and Output	ed PSI Max	OPA316 Expected				
Vin (Vpp)	Vcm (V)	Vmin (V)	Vmax (V)	SNR (dB)	THD (dB)			
2	1.5	0.5	2.5	85.3	-104.4			
2	2	1	3	85.3	-102.9			
2	3	2	4	85.2	-98.8			
2	3.2	2.2	4.2	85.2	-83.8			
2	3.5	2.5	4.5	85.1	-76.1			
2	3.8	2.8	4.8	85.0	-77.2			

12000 ncy(Hz)	14000	16000	1	PSI Co
				Amplitude 2 Vpp
put Parameters				DC Offset
IR(dB) 85.7673	THD (de -107.	3) 775	Sign	Frequency 2 KHz
DR(dB) 107.641	SINAD(0 85.1	1B) 74	ENC 1	Output Type Single En
Calculated (Hz) 1.999986k	Maximu -107	im Spur (dB 1.641	C) Max	
	HW C	ONNECTED)	O opdate
	HW C	ONNECTED)	

Measured vs Expected Results

fin = 2kHz, fsamp = 500kHz**Crossover region at 3.8V on OPA316**

PSI Signal Cal Settings Min Out		Calculat Min and Output	ed PSI Max	OPA316 Expected		OPA316 Measured		OPA320 Expected		OPA320 Measured	
Vin (Vpp)	Vcm (V)	Vmin (V)	Vmax (V)	SNR (dB)	THD (dB)	SNR (dB)	THD (dB)	SNR (dB)	THD (dB)	SNR (dB)	THD (dB)
2	1.5	0.5	2.5	85.3	-104.4			85.7	-109.2		
2	2	1	3	85.3	-102.9			85.6	-105.9		
2	3	2	4	85.2	-98.8			85.7	-106.1		
2	3.2	2.2	4.2	85.2	-83.8			85.6	-108.3		
2	3.5	2.5	4.5	85.1	-76.1			85.6	-109.1		
2	3.8	2.8	4.8	85.0	-77.2			85.7	-106.4		

Your results should show the same trend as the expected result but the specific values will differ.

Thanks for your time!

