

## **Bucks: What are all these features?**

Buck Switching Regulators Katelyn Wiggenhorn



### **Summary**

- Monitor Operating Voltages
  - EN/UVLO
  - RESET/PGOOD
  - Soft Start
- 2) Operation Considerations
  - Operation over I<sub>OUT</sub>: PFM, Auto Freq. Foldback, Current Limit & Hiccup
  - Operation over  $V_{IN}$ : Dropout, Freq Foldback
  - Light-load efficiency and calculations: Iq
- 3) EMI
  - Package and Pinout
  - Spread Spectrum Feature







#### Texas Instruments



### Basic Features: EN/UVLO, Soft Start, Reset/PGOOD



# UVLO

- UVLO Disables IC at Under-Voltage Conditions
- Many types of UVLO may be featured in your converter/controller:
  - Internal LDO UVLO
    - Correlates with VIN Min spec
  - VIN UVLO Use EN and resistors
    - Discussed in next slide







## ENABLE

- EN Used to enable and disable IC
- Options:
  - Connect EN to VIN to turn on the converter/controller when power is applied
  - Connect EN to VIN through a resistor divider to utilize UVLO
  - Connect EN to a controlled signal to externally sequence power-on of the IC.







#### Texas Instruments

# **ENABLE/UVLO Example**

- EN Threshold for VOUT =  $1.25V_{Max}$
- VIN = 36V
- UVLO<sub>Desired</sub> = 12V
- Choose R<sub>ENT</sub>=100k
- Calculate R<sub>ENB</sub> from datasheet
  - $-V_{EN_VOUT_H} = 1.25V$

 $-V_{IN_ON_H} = 12V$ 

$$R_{ENB} = \frac{V_{EN}_{VOUT}_{H}}{V_{IN}_{ON}_{H} - V_{EN}_{VOUT}_{I}}$$



| ENABLE (EN             | PIN)                                                  |                                    |      |       |      |    |
|------------------------|-------------------------------------------------------|------------------------------------|------|-------|------|----|
| VEN_VCC_H              | Enable input high level for<br>V <sub>CC</sub> output | V <sub>EN</sub> rising             |      |       | 1.15 | V  |
| V <sub>EN_VCC_L</sub>  | Enable input low level for<br>V <sub>CC</sub> output  | V <sub>EN</sub> falling            | 0.3  |       |      | v  |
| V <sub>EN_VOUT_H</sub> | Enable input high level for<br>V <sub>OUT</sub>       | V <sub>EN</sub> rising             | 1.14 | 1.196 | 1.25 | V  |
| VEN_VOUT_HYS           | Enable input hysteresis for<br>V <sub>OUT</sub>       | V <sub>EN</sub> falling hysteresis |      | -100  |      | mV |
| LKG EN                 | Enable input leakage current                          | $V_{EN} = 2 V$                     | ÷    | 1.4   | 200  | nA |

$$R_{ENB} = \frac{V_{EN_VOUT_H}}{V_{IN_ON_H} - V_{EN_VOUT_H}} R_{ENT}$$

Larger resistance decreases

Smaller resistance decreases

power loss in resistors

noise susceptibility

• 
$$R_{ENB} = \frac{1.25}{12 - 1.25} * 100k$$

• R<sub>ENB</sub>=11.6k

#### **TEXAS INSTRUMENTS**

### **PGND**

## **PVIN**

EN

### **TECH DA** Texas Instrum LM73605/LM73606

## **EN/UVLO in Block Diagram**







## Soft Start

- Soft start limits peak inrush current at startup
- Internal Soft Start
  - Leave SS pin floating
- External Soft Start
  - Connect capacitor
  - Larger capacitor  $\rightarrow$  Slower rise-time



Fast Ramp – Internal SS



**Slow Ramp – External SS** 







### Texas Instruments

## Soft Start Example

- VIN = 12V
- Desired rise time = 50ms (>internal soft start)
- Check datasheet find equation:  $C_{SS} = I_{SSC} * t_{SS}$
- $I_{SSC}=2uA$
- $t_{SS}$ =50ms desired
- $C_{SS}$ =100nF

| $C_{SS} = I$ | SSC × | tss |
|--------------|-------|-----|
|--------------|-------|-----|

#### where

C<sub>SS</sub> = soft-start capacitor value (F)

(12)

- I<sub>SSC</sub> = soft-start charging current (A)
- t<sub>ss</sub> = desired soft-start time (s)



#### Or derive the equation with datasheet specs

| SOFT ST          | ART (SS/TRK PIN)                |         |                                                                  |       |       |       |    |
|------------------|---------------------------------|---------|------------------------------------------------------------------|-------|-------|-------|----|
| tss              | Internal soft-start time        |         | C <sub>SS</sub> = OPEN, from EN rising edge to PGOOD rising edge | 3.5   | 6.3   |       | ms |
| ISSC             | Soft-start charge current       |         |                                                                  | 1.8   | 2     | 2.2   | μA |
| R <sub>SSD</sub> | Soft-start discharge resistance | UVLO,   | TSD, OCP, or EN = 0                                              |       | 1     |       | kΩ |
| VOLTAGE          | E REFERENCE (FB PIN)            | 91:<br> |                                                                  | 1-8   |       |       |    |
| V <sub>FB</sub>  | Feedback voltage                | PWM r   | node                                                             | 0.987 | 1.006 | 1.017 | V  |





9

# **RESET/PGOOD**

- **RESET/PGOOD** Used to signal when the output of the converter/controller is at the desired level
- Prevents false RESET flags with:
  - Hysteresis
  - Glitch Protection
- Connect to external circuitry to signify when it is okay to rely on this regulated voltage







## **RESET/PGOOD in Block Diagram**







Texas Instruments



# Advanced Features: PFM, Automatic Frequency Foldback, Clock Control, Current Limit, Hiccup





# **Comp Curve**

- Rules of Operation
  - -1. Inductor current (I<sub>1</sub>) will not go above Peak Current Command in normal operation
  - -2. IL will always drop to at least Valley Current Command





#### Valley Current Command

**TEXAS INSTRUMENTS** 

## PFM

- Light load
- SW is HIGH (HS FET ON, LS FET OFF) - Current goes up to I<sub>peak-min</sub>
- SW is LOW (HS FET OFF, LS FET ON) - Current goes down to 0A
- SW is OFF (HS and LS FETs OFF) – DCM Ringing
- Start next switch when FB ( $V_{OUT}$ ) hits low threshold
- DCM Pulse frequency increases as I<sub>OUT</sub> increases
- Good light load efficiency







14

# **CCM Auto Frequency Foldback**

- SW is HIGH until Inductor Current hits Peak Current Command
- SW is LOW until  $I_L$ :
  - Reaches Valley Current Command
  - Or goes below Valley Current Command

 Auto foldback improves efficiency with lower switching frequency



Time (us)





15

# **Clock Control**

- SW is HIGH until Inductor Current hits Peak Current Command
- SW is LOW for time set by Clock

Constant Frequency









# **Current Limit Operation**

- SW is HIGH until Inductor Current hits Peak Current Command
- SW is LOW for time set by Clock
- If IL has not reached Valley Current Command, SW will stay LOW until it does.
- Frequency folds back
  - Limits current
  - $-V_{OUT}$  Droops used to trigger hiccup







#### Texas Instruments

# **Hiccup Operation**

- Hiccup
- Disables converter when V<sub>OUT</sub> droop detected
  - -Usually ~40%  $V_{OUT NOM}$
  - See datasheet
- Tries again after set time
  - Usually 10's of ms
  - See datasheet







Valley Current Command

### V<sub>OUT</sub> Droop

18

# **Hiccup vs No Hiccup**

- Advantage of Hiccup
  - -Reduces power consumption during short circuit
  - -Reduces heat during short circuit



### **Benefits and Drawbacks of each Region**







### Protects device Will enter hiccup if VOUT droops to datasheet value

20

### **Frequency Foldback Example**

- $V_{IN} = (T_S \times V_{OUT})/t_{ON}$
- LMR33630:
  - $-T_{S}$ =500ns; V<sub>OUT</sub>= 5V; T<sub>ON\_MIN(typ)</sub>=72ns  $-V_{IN}$ = (T<sub>S</sub> x V<sub>OUT</sub>)/t<sub>ON</sub> =(500ns x 5V)/72ns = 35V





21

### Texas Instruments

## Not All switchers are equal: High-VIN output ripple



Competitor has +/-100mV output ripple for high-VIN operation



LM53635 Has smooth frequency foldback at high input voltage.



### **TEXAS INSTRUMENTS**



# **T<sub>ON\_MIN</sub>** Datasheet Specs







23

# **T<sub>ON MIN</sub> Frequency Foldback**

- As V<sub>IN</sub> Increases:
  - Duty Cycle Decreases
  - $-T_{ON}$  reduces
- $T_{ON}$  will eventually need to go below T<sub>ON MIN</sub> (spec'd in datasheet)
- The IC cannot switch HIGH for shorter than  $T_{ON MIN}$  so the frequency folds back.
  - Duty cycle reduces
  - $-V_{OUT}$  remains the same
  - $-T_{ON MIN}$  is not violated





**Note\* Heavy Load Helps!** 

### **Key Features for Automotive: Dropout**

- $V_{IN-Min} = (V_{IN} \times D_{MAX}) (R_{DS ON} \times I_{IN}) (R_{DCR} \times I_{L RMS})$
- $V_{OUT} = (V_{IN} \times D_{MAX})$
- 5V/0.98 = V<sub>IN MIN FSW</sub> = 5.10V
  - There is significant variation between the calculated value of frequency fold-back and the actual value of frequency fold-back. We recommend providing sufficient margin as necessary.









## **Understanding Quiescent Current Specifications**



### **Key Features for Automotive: Low-Iq**

- Always-on automotive applications require power even when car is off -Body electronics (keyless entry)
  - -Cluster, Infotainment (keep-alive MCU)
- These applications requires very low no-load operating current (Iq)
- OEMs set standards for Iq at module level -Sometimes < 100uA
- Suppliers will want per DC/DC Iq's in 10uA to 40uA range





**TEXAS INSTRUMENTS** 

### **Key Features for Automotive: Low-Iq**



♦ Documents Now



Community

> Software

TEXAS INSTRUMENTS

LMR33630 SNVSAN3A - AUGUST 2017 - REVISED FEBRUARY 2018

#### LMR33630 SIMPLE SWITCHER® 3.8-V to 36-V, 3-A Synchronous Step-Down Voltage Converter

#### 1 Features

Configured for Rugged Industrial Applications

Folder

- Input Voltage Range: 3.8 V to 36 V
- Output Voltage Range: 1 V to 24 V
- Output Current: 3 A
- Peak-Current-Mode Control
- Short Minimum On-Time of 70 ns
- Frequency: 400 kHz, 1.4 MHz, 2.1 MHz
- Junction Temperature Range –40°C to +125°C
- Integration Simplifies Design and Reduces Size
  - Integrated Synchronous Rectification
  - Integrated Compensation Network
- Best-in-Class Power Dissipation
  - >91% Efficiency at Full Load
- Low Shutdown Quiescent Current of 5 µA
- Low Operating Quiescent Current of 24 µA
- Flexible System Interface
  - Power-Good Flag and Precision Enable
- Create a Custom Design Using the LMR33630 with the WEBENCH® Power Designer

#### 2 Applications

- Motor Drive Systems: Drones, AC Inverters, VF Drives, Servos
- Factory and Building Automation Systems: PLC CPU, HVAC Control, Elevator Control
- General Purpose Wide V<sub>IN</sub> Power Supplies

#### 3 Description

The LMR33630 SIMPLE SWITCHER® regulator is an easy-to-use, synchronous, step-down DC/DC converter that delivers best-in-class efficiency for rugged industrial applications. The LMR33630 is capable of driving up to 3 A of load current from an input of up to 36 V. The LMR33630 provides high light load efficiency and output accuracy in a very small solution size. Features such as a power-good flag and precision enable provide both flexible and easy-to-use solutions for a wide range of applications. The LMR33630 automatically folds back frequency at light load to improve efficiency. Integration eliminates most external components and provides a pinout designed for simple PCB layout. Protection features include thermal shutdown, input undervoltage lockout, cycle-by-cycle current limit, and hiccup short-circuit protection. The LMR33630 is available in an 8-pin HSOIC package.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE   | BODY SIZE (NOM)   |  |  |
|-------------|-----------|-------------------|--|--|
| LMR33630    | HSOIC (8) | 5.00 mm × 4.00 mm |  |  |

 For all available packages, see the orderable addendum at the end of the data sheet.

### Three Measurements for Quiescent Current:

- Shut Down Current
  - Part disabled; Enable tied to GND.
- Non-Switching Iq
  - Part enabled, feedback tied high. This value can be found in the EC table, and is traditionally measured open loop on the ATE.

### Switching Iq

 Also known as operating quiescent current or no load input current.





#### **TEXAS INSTRUMENTS**

### **Calculating Operating I<sub>o</sub> Based on EC Table**



- $I_{O_{OUT}} = I_{O} + I_{FN} + (I_{B} + I_{DIV}) \times (V_{OUT} / (n_{eff} \times V_{IN}))$ 
  - $-I_{Q-SW} = I_{VIN} = No Load Current$
  - $-I_{O} = I_{O-NON-SW} = Current Drawn at Input Pin$
  - $-I_{EN}$  = Current Drawn at Enable Pin
  - $-I_{B}$  = Current Drawn at Bias Pin
  - $-I_{DIV}$  = Current Drawn at Feedback Divider
  - n<sub>eff</sub> = Light Load Efficiency
- Example (LMS3655):

$$-I_{Q-SW}=I_{VIN}=23.2\mu A$$

- $-I_{Q} = I_{Q-NON-SW} = 7.5 \mu A$
- $-I_{B} = 32\mu A$
- $-I_{DIV} = 0\mu A$  (Fixed Output Variant)



**TEXAS INSTRUMENTS** 



## Wide Input Converters: EMI Optimized



### **TEXAS INSTRUMENTS**

### What makes a low EMI Buck





1mV pkpk on PCB trace



### **EMI Optimization: Hot Rod Package**







# **No-wirebond VSON packaging** 3. Spread spectrum feature



### **EMI Optimization: Symmetric Pinout**

### Minimize EMI through:

- 1. No-wirebond VSON packaging
- 2. Symmetric pinout
- 3. Spread spectrum feature









### **EMI Optimization: Spread Spectrum Feature**

Minimize EMI through:

- 1. No-wirebond VSON packaging
- 2. Symmetric pinout
- 3. Spread spectrum feature



LMS3655 without spread spectrum

LMS3655 with spread spectrum

Spread spectrum makes it easier to design and meet OEM standards for conducted and radiated EMI







# **Design Tools**



### **TEXAS INSTRUMENTS**

# **Design Tools**

### • WEBENCH

- -Every part in our portfolio is on WEBENCH
- Tina/PSpice
  - -Every part in our portfolio has simulation files
- Design Guidelines
  - -Every datasheet has an example circuit and design details
  - -Every IC has an EVM
- Debugging

-E2E















Copyright © 2017, Texas Instruments Incorporated


©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's Terms of Use, viewable at TI.com



# Understanding, measuring, and reducing output noise in DC/DC switching regulators

Practical tips for output noise reduction

Katelyn Wiggenhorn, Applications Engineer, Buck Switching Regulators

Robert Blattner, Applications Engineer, Buck Switching Regulators



Texas Instruments

## **Detailed agenda**

#### • Understanding the Noise Sources

- DC/DC converter operation overview
- Noise components (high frequency vs low frequency)
- Relevant parasitic elements in the circuit

#### Measuring Noise

- What is "real" vs "fake" noise
- Examples of measurement techniques (good vs. bad)
- Reducing Noise (high frequency and low frequency)
  - Layout techniques and comparison (good vs. bad)
  - Passive component selection and placement
  - Filtering techniques and examples





#### Texas Instruments

## Understanding the sources of noise

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





#### TEXAS INSTRUMENTS

### The buck regulator



Understanding → Measuring → Reducing Noise





LOAD

Texas Instruments

### Less ideal buck regulator



"Free" components in red







Texas Instruments

## **Output ripple and noise (example)**



**Understanding** → Measuring → Reducing Noise





#### **TEXAS INSTRUMENTS**

## LF ripple origin

• Result of the inductor ripple current and output capacitor impedance



Total LF Ripple = (1) + (2) + (3)







#### TEXAS INSTRUMENTS

## LF ripple with different capacitor types



|                | Inductor ripple current                       |   |
|----------------|-----------------------------------------------|---|
| VOUT<br>RIPPLE | Ceramic cap (C dominated,<br>low ESR low ESL) | • |
| VOUT<br>RIPPLE | Tantalum cap (medium ESR, some ESL)           |   |
| VOUT<br>RIPPLE | OSCON cap (medium ESR, some more ESL)         |   |

VOUT Aluminum Electrolytic cap RIPPLE (ESR dominated)

Each capacitor above is  $47\mu F$ . The difference is the chemistry







#### Texas Instruments

## **HF** noise origin









#### TEXAS INSTRUMENTS

## HF noise vs inductor parasitic capacitance

|                                  |                         |           |                                     |                                                                             | Inductor A | h   |
|----------------------------------|-------------------------|-----------|-------------------------------------|-----------------------------------------------------------------------------|------------|-----|
|                                  |                         |           |                                     |                                                                             |            | Vsv |
|                                  | INFLICTOR + 10          |           |                                     |                                                                             | Inductor B |     |
|                                  |                         |           |                                     |                                                                             |            |     |
| c1 50.0mV/div<br>R1 50.0mV 1.0μs | 50Ω <sup>B</sup> W:250M | <br>(A' ( | 1.0μs/o<br>Previe<br>0 acqs<br>Auto | div 20.0GS/s IT 250fs/pt<br>w J<br>s RL:40.0M<br>December 07, 2012 15:11:23 |            |     |









10

#### TEXAS INSTRUMENTS

## Measuring noise

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





#### Texas Instruments

## **Measuring noise**

- Before we explore ways/tools for reducing the output noise, let's make sure we are measuring it properly.
- Improper measurement techniques can results in exaggerated output noise.
- Exaggerated output noise measurements can result in overly conservative "methods" for fixing it.
- It is important to know the "real" amount of noise before we start reducing it.

Understanding → Measuring → Reducing Noise





Texas Instruments

## **BAD Measurement (example)**



Understanding  $\rightarrow$  Measuring  $\rightarrow$  Reducing Noise





TEXAS INSTRUMENTS

### Improved measurement (example)



Understanding  $\rightarrow$  Measuring  $\rightarrow$  Reducing Noise





#### TEXAS INSTRUMENTS

#### Comparison



#### ~2x difference in measured noise!

The circuit is exactly the same.

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





## The difference is the measurement technique.

#### **TEXAS INSTRUMENTS**

## Making a 1x probe (example)

- Short coax cable soldered to the output
- 0.1µF coupling capacitor
- 50 $\Omega$  termination







- Probe OK for 250MHz scope BW

Understanding  $\rightarrow$  Measuring  $\rightarrow$  Reducing Noise







Probe frequency response

• High pass filter with cutoff frequency at 31.8kHz. OK for most modern switchers with loaded output.

TEXAS INSTRUMENTS

## Advantage of 1x probe



TE



#### Cleaner reading Can zoom to 1mV/div for sub 1mV measurements

#### Fuzzy due to the scope vertical sensitivity limitations of a 10x probe. Cannot zoom below 10mV/div

#### Texas Instruments

## **Reducing noise**

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





**TEXAS INSTRUMENTS** 

## **Reducing noise - toolbox**

- LF Ripple
  - Inductor vs Switching Frequency
  - Output capacitor
  - Post filtering
- HF Noise
  - Component placement
  - Component selection (with attention to packaging parasitics)
  - PCB routing and stack-up
  - Filtering
    - Input filters (conducted EMI)
    - Output filters (small HF capacitors)







Texas Instruments

## LF ripple reduction

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





TEXAS INSTRUMENTS

## LF ripple reduction



 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





#### **U** Texas Instruments

## LF ripple – switching frequency and inductance

- We understand that the LF ripple is a function of the inductor ripple current and the output capacitor(s) impedance.
- We can:
  - Lower the ripple current
    - For the same inductor, increase the switching frequency
      - Tradeoff: increased switching losses
    - For the same switching frequency, increase the inductance
      - Tradeoff: increased solution size
  - Lower the capacitor impedance
    - Use low ESR and low ESL capacitors
      - Tradeoff: perhaps cost
    - Use multiple capacitors in parallel
      - Tradeoff: cost, board space







**TEXAS INSTRUMENTS** 

## LF ripple – second stage filter

- Certain applications, such as test and measurement, are sensitive to the voltage ripple and routinely require very low output voltage ripple, such as 0.1%.
- To attain this level of attenuation it is required to add another pair of L and C to the output of a buck regulator as shown in the image below.



 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





**TEXAS INSTRUMENTS** 

### Second stage filter and output sense

- Common concern is how to position the 2<sup>nd</sup> stage filter before or after the feedback (VOUT) sense point.
- Assumption: The second stage filter should be placed after the VOUT sensing point to avoid instabilities.
- Reality: Regardless of the connection the filter still interacts with the original output capacitance and there
  is resonance created.
- Connecting the filter before the VOUT sense:
  - allows us to account for it in the stability review
  - there is no load regulation penalty resistive drop is compensated by the sense.







#### (VOUT) sense point. to avoid instabilities. apacitance and there

Texas Instruments

### **Second stage filter – component calculations**



Buck with a second-stage LC filter

- Improper design of the second stage filter could make the converter unstable.
- Two objectives
  - 1. Attenuation
  - 2. Loop stability

Understanding  $\rightarrow$  Measuring  $\rightarrow$  Reducing Noise





Texas Instruments

## **Second stage filter – component calculations**

- To ensure low impedance and to make sure the filter doesn't affect the loop substantially, the ratio of first stage (C1) to second stage capacitance (C2) is set to 1:10
- The value of the secondary inductor is then chosen for the remainder 40dB attenuation.



Understanding → Measuring → Reducing Noise

Closed output impedance with different filter designs





#### Texas Instruments

## **Second stage filter – Q and damping**

• There may be a need to add a damping resistor in parallel with the inductor





Placing the resistor parallel to the inductor damps the Q

High Q results in low phase margin

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





#### **TEXAS INSTRUMENTS**

## Second stage filter – choosing Rdamp and L2

• LMZM23601 with second stage filter.



LMZM23601 with a second-stage filter

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





#### Filter Calculator with Equations



**TEXAS INSTRUMENTS** 

## **Second stage filter - results**

• LMZM23601 with second stage filter.



 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





29

#### **TEXAS INSTRUMENTS**

### **HF** noise reduction

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





**TEXAS INSTRUMENTS** 

### **HF** noise reduction



 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





#### **U** Texas Instruments

## **HF** noise reduction – component placement

- First step is to optimize (minimize) the area of the **high di/dt loop**.
- For Buck, the high di/dt loop is formed by the input capacitor and the power MOSFETs (switches).
  - Input capacitor as close as possible to IC = Smaller loop area
  - Smaller loop area = Lower ringing on SW node
  - Lower ringing on SW node = Lower output noise
- So first step = optimize input capacitor placement for Buck





**FEXAS INSTRUMENTS** 

### HF noise reduction – component placement

- For a Buck converter...
  - The INPUT cap position affects the OUTPUT noise!
  - The **INPUT cap** position affects the **OUTPUT noise**!
  - The INPUT cap position affects the OUTPUT noise!
  - The INPUT cap position affects the OUTPUT noise!
  - The INPUT cap position affects the OUTPUT noise!
  - The INPUT cap position affects the OUTPUT noise!
  - The INPUT cap position affects the OUTPUT noise!
  - The **INPUT cap** position affects the **OUTPUT noise**!
  - The INPUT cap position affects the OUTPUT noise!
  - The INPUT cap position affects the OUTPUT noise!
  - The **INPUT cap** position affects the **OUTPUT noise**!
  - The INPUT cap position affects the OUTPUT noise!
  - The INPUT cap position affects the OUTPUT noise!





èxas Instruments

## High di/dt capacitor placement - example

- Buck Regulator comparison with Cin location
- 12V input, 3.3V output, 2A Buck



Understanding → Measuring → Reducing Noise



#### Texas Instruments



## **High di/dt capacitor placement - example**

- Buck Regulator comparison with Cin location (2 times smaller loop area)
- 12V input, 3.3V output, 2A Buck







#### **TEXAS INSTRUMENTS**
## **Bypass capacitor routing - example**

- Place bypass capacitors on same side of board as component being decoupled
- Locate as close to pin as possible
- Keep trace width thick and short





Frequency / Hertz





36

### Texas Instruments

## **HF** noise reduction – board layout tricks



- Same BOM!
- Different stackup
  - Shielding the input (noisy) and • output lines
  - Fail by ~5dB vs Pass by ~2dB

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 







37

## **HF noise reduction – board layout tricks**







38

## HF noise reduction – board layout tricks









39

# Conducted EMI filter and radiated EMI performance TECH DAYS





40

### Texas Instruments

## HF noise reduction – package level parasitics

- Some packaging options are better for reducing inductance in the high di/dt loop.
- Power module packages can integrate a high frequency bypass capacitor.
- IC Pinout and Construction Matters







### Texas Instruments

## HF noise reduction – DC-DC power modules save you layout troubles<sup>Texas Instruments</sup>

- Reducing the high di/dt loop area integrated input capacitance.
- Reducing the high dv/dt node area integrated L and smaller switch node.





Understanding → Measuring → Reducing Noise



## **HF** noise reduction – proper pinout

To minimize the di/dt loop, it is best if the Buck regulator has VIN and PGND pins next to each other. This allow for • placing the input capacitor as close as possible to the IC.







43

### di/dt loop • Bond wire vs Copper pillar interconnects CIN Standard wire bond QFN package 'Hotrod' flip chip on lead frame QFN -Wire Bond Silicon Die Silicon Die Copper bump Lead frame Solder Board Lead frame Read and A grade to be Board Wire bond LMR33630 BONDWIFE "Hotrod" 1 2.32V 2.0V/div 1MD %250M 100ms/div 20.0GS/s IT 5.0ps/pt 8.429V 2.0V 100ms 9.731V Proview $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 0 acqu RL-2008 1.302V Auto

## IC package construction can help



### Texas Instruments

## **HF filtering**

• After careful input capacitor placement and layout there will be some left over high frequency noise – we cannot completely eliminate parasitic L and C.







**TEXAS INSTRUMENTS** 

## **HF filtering**

• Which one is better?



 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





### Texas Instruments

## **HF filtering**



Frequency / Hertz

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





### SIMetrix schematic example:



### parallel\_capacitor\_impedance\_sysch

### TEXAS INSTRUMENTS

## HF filtering with wrong capacitor (example)







48

## HF filtering - utilizing PCB parasitic inductance



Understanding  $\rightarrow$  Measuring  $\rightarrow$  Reducing Noise





49

## **HF filtering – strategy**

- Leave footprint in the layout for 2-3 HF filter capacitors.
- Measure the ringing frequency and pick a capacitor with an impedance notch close to, but lower than that frequency.
- Use multiple capacitors of the <u>same value in parallel</u> to avoid new peaks in the impedance curve.

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





Texas Instruments

## HF filtering – pick the correct capacitor

- Measure your caps
- Mark up your capacitor kit!
- This data may also be available from the capacitor vendor.







51

### Texas Instruments

## **Summary**

- Understanding the Noise Sources
- Measuring Noise
- Reducing Noise (high frequency and low frequency)







Texas Instruments

## Resources

## • Application Notes and Blogs on EMI and Noise Reduction

- <u>Simple Success With Conducted EMI From DCDC Converters</u>
- Simplify low EMI design with power modules
- Wiki on Understanding, measuring, and reducing output voltage ripple
- Design a second-stage filter for noise sensitive applications
- PCB layout techniques for low noise power designs (in progress)

 $\textbf{Understanding} \rightarrow \textbf{Measuring} \rightarrow \textbf{Reducing Noise}$ 





TEXAS INSTRUMENTS



©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's Terms of Use, viewable at TI.com