Introduction – What is an isolated gate driver? TIPL 501 TI Precision Labs – Isolated Gate Drivers

Presented and Prepared by Derek Payne

WHAT IS A GATE DRIVER?

Gate drivers and switching power supplies

Gate drivers and power transistors

Table 1 Key Performance Parameters								
Parameter	Value	Unit						
V _{DS} @ T _{j,max}	700	V						
RDS(on),max	45	mΩ						
Q _{g.typ}	93	nC (9.3nF @ 10V)						
I _{D,pulse}	212	Α						

Power MOSFET

Drain-Source Breakdown Voltag	e (V _{GS} = 0, I _D = 10 μAdc)	V _{(BR)DSS}	60	-	Vdc
Static Drain–Source On–Resistance $(V_{GS} = 10 \text{ Vdc}, I_D = 0.5 \text{ Adc}) \\ (V_{GS} = 4.5 \text{ Vdc}, I_D = 75 \text{ mAdc})$		r _{DS(on)}	- -	5.0 6.0	Ω
Input Capacitance		Ciss	-	60	pF
Output Capacitance	(V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	Coss	-	25]
Reverse Transfer Capacitance	,	Crss	-	5.0]

•
$$P_{SW} = C_G \times V$$

• Example:

$$- C_{G} = 15 nF$$

$$- F_{SW} = 200$$

$$-V_{DD} = 12V$$

•
$$P_{SW} = 15 \times 10^{\circ}$$

× (12 V)
× 2×10⁵

Small Signal MOSFET

Switching losses

What is a gate driver?

NON-ISOLATED AND ISOLATED GATE DRIVERS

7

Non-isolated gate drivers

Copyright © 2017, Texas Instruments Incorporated

Non-isolated gate drivers – Limitations

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted), all voltages are with respect to COM (unless otherwise noted), currents are positive into and negative out of the specified terminal.⁽¹⁾⁽²⁾

PARAMETER					MIN	MAX		
		HI, LI ⁽³⁾			-5	22		
Input voltage		VDD supply voltage		-0.3	22			
		HB			-0.3	700		
DYNAMIC CHARACTERISTICS								
t _{PDLH}	Turn-on propagation delay (without deadtime)		LI to LO, HI to HO, HS = $COM = 0 V$		100	160		
t _{PDHL}	Turn-off propagation delay		LI to LO, HI to HO, HS = COM = 0 V		100	160		

Isolated gate drivers

Why use isolation in gate drivers?

Example Topologies

Power Supply)

TEXAS INSTRUMENTS

Thanks for your time! Please try the quiz.

Introduction – What is an Isolated Gate Driver? Multiple Choice Quiz

TI Precision Labs – Isolation

Gate drivers can be found in these electrical systems 1.

- Commercial a.
- Automotive b.
- Industrial C.
- d. All of the above

Gate drivers are used in switching power supplies because ____ 2.

- They orchestrate the carefully timed switching of an array of high-power transistors. a.
- They can drive power transistors at hundreds of megahertz b.
- They amplify a low-voltage or low-current signal from a microcontroller C.
- They are not used, because they are prohibitively slow and inefficient d.

Could a typical power MOSFET reasonably function in a switching converter at 200MHz? 3.

- Yes, because of the reduced voltage and capacitance a.
- b. Yes, given a large enough heatsink
- Yes, if I just try extra hard and believe in my high bandwidth power amplifier C.
- d. Probably not...

Non-isolated gate drivers need to use a(n) ______ inside the IC to operate at high voltage 4.

- **Bootstrap Supply** a.
- Level-Shifter b.
- **Deglitch Filter** C.
- Isolated Gate Driver d.

Which of these is NOT true about isolated gate drivers, compared to non-isolated? 5.

- Isolated gate drivers can be more flexible than non-isolated gate drivers; the output common is not wired to the control common a.
- Isolated gate drivers can have significantly more leakage across the barrier than non-isolated gate drivers, when working properly b.
- Isolated gate drivers can be used at much greater voltages than non-isolated drivers, up to the limits of the isolation technology C.
- Isolated gate drivers can be faster and more robust than non-isolated gate drivers d.

Which of these is NOT a reason to use isolated gate drivers? 6.

- Regulatory requirements may call for isolation a.
- b. Some topologies are simplified by the presence of an isolation barrier
- Isolated gate drivers may have better performance than non-isolated gate drivers in some cases C.
- Isolated gate drivers are guaranteed to solve issues with surge, lightning strikes, etc. d.

Introduction – What is an Isolated Gate Driver? Multiple Choice Quiz – Solutions

TI Precision Labs – Isolation

4

Gate drivers can be found in these electrical systems 1.

- Commercial a.
- Automotive b.
- Industrial C.
- All of the above d.

Gate drivers are used in switching power supplies because _____ 2.

- They orchestrate the carefully timed switching of an array of high-power transistors. a.
- They can drive power transistors at hundreds of megahertz b.
- They amplify a low-voltage or low-current signal from a microcontroller C.
- They are not used, because they are prohibitively slow and inefficient d.

Could a typical power MOSFET reasonably function in a switching converter at 200MHz? 3.

- Yes, because of the reduced voltage and capacitance a.
- b. Yes, given a large enough heatsink
- Yes, if I just try extra hard and believe in my high bandwidth power amplifier C.
- Probably not... d.

Non-isolated gate drivers need to use a(n) ______ inside the IC to operate at high voltage 4.

- **Bootstrap Supply** a.
- Level-Shifter b.
- **Deglitch Filter** C.
- Isolated Gate Driver d.

Which of these is NOT true about isolated gate drivers, compared to non-isolated? 5.

- Isolated gate drivers can be more flexible than non-isolated gate drivers; the output common is not wired to the control common a.
- Isolated gate drivers can have significantly more leakage across the barrier than non-isolated gate drivers, when b. working properly
- Isolated gate drivers can be used at much greater voltages than non-isolated drivers, up to the limits of the isolation technology C.
- Isolated gate drivers can be faster and more robust than non-isolated gate drivers d.

Which of these is NOT a reason to use isolated gate drivers? 6.

- Regulatory requirements may call for isolation a.
- Some topologies are simplified by the presence of an isolation barrier b.
- Isolated gate drivers may have better performance than non-isolated gate drivers in some cases C.
- Isolated gate drivers are guaranteed to solve issues with surge, lightning strikes, etc d.

