Critical isolated gate driver specifications

Presented and Prepared by Derek Payne

Ü **TEXAS INSTRUMENTS**

IN– Pull-Up Resistance to VREF = 500 kΩ, VREF = 5.8 V, IN+ Pull-Down Resistance to GND = 230 kΩ

4

130

Figure 13. Propagation Delay vs. VCCI

0

Figure 12. Propagation Delay vs. Temperature

Pulse Duration Distortion

7

Pulse Duration Distortion

Pulse Duration Distortion

Texas Instruments

TEXAS INSTRUMENTS

11

Timing Skew

$$T_{SKEW,HL} = |48ns - 47ns| = 1ns$$

TEXAS INSTRUMENTS

Common-Mode Transient Immunity (CMTI)

OUTA state becomes corrupted at ~190V/ns

close to the pins

Dynamic test: IN driven with

variable resistance and input loop **TEXAS INSTRUMENTS** 13

Common-Mode Transient Immunity (CMTI)

Common-Mode Transient Immunity (CMTI)

Example: SiC Half Bridge

	$T_{OFF(MAX)} = 35ns$			
	$T_{ON(MIN)} = 25ns$			
	$T_R = 10ns$			
	$T_F = 8ns$			
$\square \square $	$=\frac{800V}{8ns}=100V/ns$			
$DT_{MIN(SKEW)} = T_{SKEW} + \left(T_{OFF(MAX)} - T_{ON(MIN)}\right)$				
$DT_{MIN(PROP)} = \left(T_{PDHL(MAX)} - T_{PDLH(MIN)}\right)$				
$+ \left(T_{OFF(MAX)} - T_{ON(MIN)} \right)$				
kapafarmar Drivar				

Capacitive Driver (ISO5852S)

Propagation Delay	-
Pulse Duration Distortion	-
Part-to-Part Skew	-
CMTI	100V/ns

Skew: 30ns + (35ns - 25ns) = 40ns t_{PD} : (110ns - 0ns) + (35ns - 25ns) = 110ns

nstormer Driver

Propagation Delay	135ns min	225ns max			
Pulse Duration Distortion	-25ns min	35ns max			
Part-to-Part Skew	-	(60ns max)			
CMTI	-	50V/ns 🗱			
Skew: 60ns + (35ns - 25ns) = 70ns					
t_{PD} : $(225ns - 135ns) + (35ns - 25ns) = 100ns$					

Optoisolator

Propagation Delay	
Pulse Duration Distortion	
Part-to-Part Skew	-35
CMTI	15
Skew: 350ns + (35ns – 25	ns)
t_{PD} : (500 $ns - 100ns$) + (3)	5ns

110ns max 20ns max 30ns max

Ons min 500ns max 00ns min 300ns max

- 50ns min 350ns max
- 6V/ns 🔀 -) = 360 ns
- (s 25ns) = 410ns

TEXAS INSTRUMENTS

Looking Forward

ORDERABLE PART NUMBER	MINIMUM SOURCE AND SINK CURRENT	DESCRIPTION
UCC5310MC	2.4 A and 1.1 A	Miller clamp
UCC5320SC	2.4 A and 2.2 A	Split output
UCC5320EC	2.4 A and 2.2 A	UVLO with respect to IGBT emitter
UCC5350MC	5 A and 5 A	Miller clamp
UCC5350SB	5 A and 5 A	Split Output with 8 V UVLO
UCC5390SC	10 A and 10 A	Split output
UCC5390EC	10 A and 10 A	UVLO with respect to IGBT emitter

Thanks for your time! Please try the quiz.

Critical Isolated Gate Driver Specifications Multiple Choice Quiz

TI Precision Labs – Isolation

Quiz: Critical Isolated Gate Driver Specifications

Propagation delay is determined by: 1.

- The speed of electrons through copper a.
- The specific circuitry within the gate driver b.
- The speed of light C.
- The cost of the process used d.

Pulse duration distortion is conventionally: 2.

- Measured as an absolute value a.
- Measured by both positive and negative distortion b.
- Measured according to the manufacturer's conventions C.
- Not measured at all d.

Timing skew is important for systems with _ 3.

- Very low switching frequencies a.
- Only a single switch (such as single phase boost PFC) b.
- Bridge topologies with high efficiency and minimal dead time requirements C.
- Systems that use IGBTs d.

Quiz: Critical Isolated Gate Driver Specifications

- Common-mode transient immunity is primarily determined by the _____ 4. isolation barrier.
 - Parasitic capacitance a.
 - Parasitic inductance b.
 - Parasitic resistance C.
 - Parasitic BJT d.

In an application environment, the most common cause for drift in isolated gate driver specifications is: 5.

- Changes in supply voltage a.
- Changes in output load b.
- Changes in semiconductor characteristics over the lifetime of the IC C.
- Changes in temperature d.

between the sides of the

Critical Isolated Gate Driver Specifications Multiple Choice Quiz – Solutions

TI Precision Labs – Isolation

4

Quiz: Critical Isolated Gate Driver Specifications

Propagation delay is determined by: 1.

The speed of electrons through copper a.

The specific circuitry within the gate driver b.

- The speed of light C.
- The cost of the process used d.

Pulse duration distortion is conventionally: 2.

- Measured as an absolute value a.
- Measured by both positive and negative distortion b.
- Measured according to the manufacturer's conventions C.
- Not measured at all d.

Timing skew is important for systems with _ 3.

- Very low switching frequencies a.
- Only a single switch (such as single phase boost PFC) b.
- Bridge topologies with high efficiency and minimal dead time requirements C.
- Systems that use IGBTs d.

Quiz: Critical Isolated Gate Driver Specifications

- Common-mode transient immunity is primarily determined by the _____ 4. isolation barrier.
 - Parasitic capacitance **a**.
 - Parasitic inductance b.
 - Parasitic resistance C.
 - Parasitic BJT d.

In an application environment, the most common cause for drift in isolated gate driver specifications is: 5.

- Changes in supply voltage a.
- Changes in output load b.
- Changes in semiconductor characteristics over the lifetime of the IC C.
- Changes in temperature d.

between the sides of the

