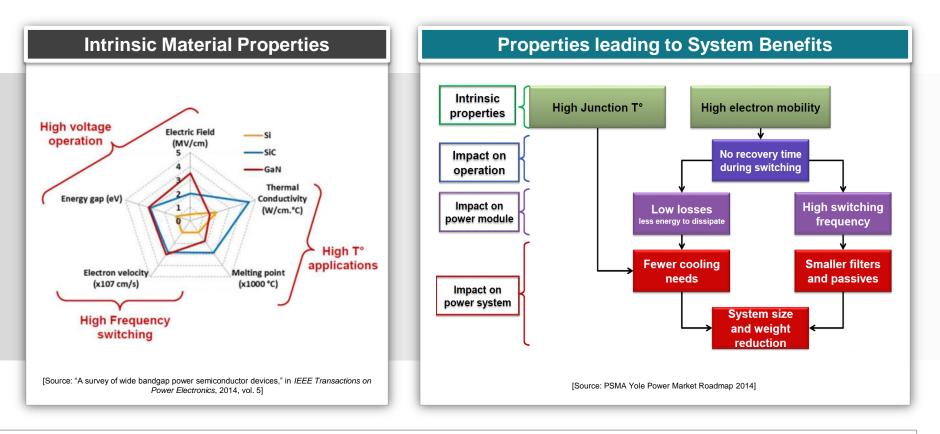
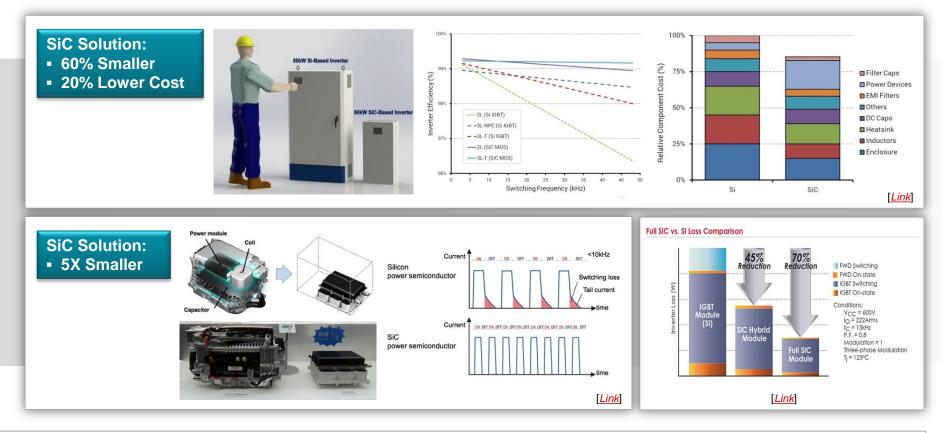
Deep dive on SiC-based 10kW grid tie inverter design challenges

Bart Basile

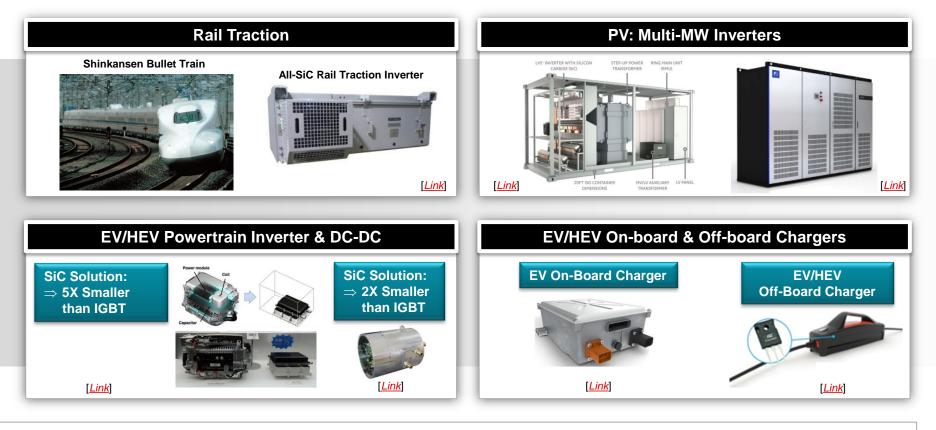
SEM – Grid Infrastructure – Renewable Energy


Asia FAE Summit - 2018



Why SiC?

SiC: system benefit examples

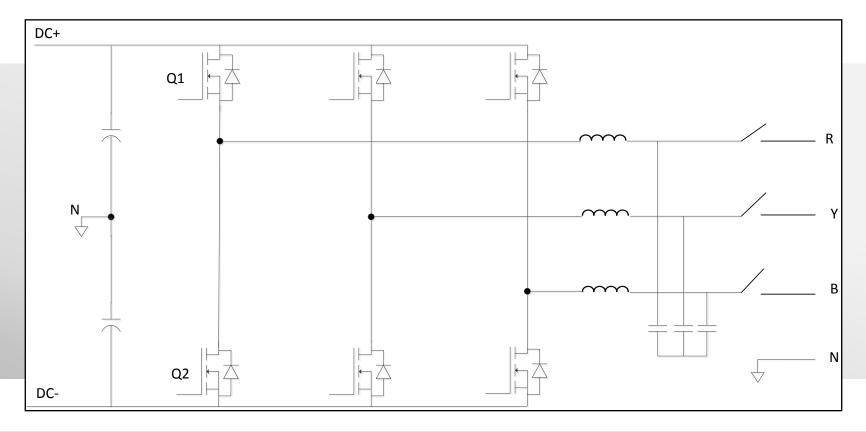

SiC: application landscape

[Sources: PSMA Yole Reports, PCIM'2016]

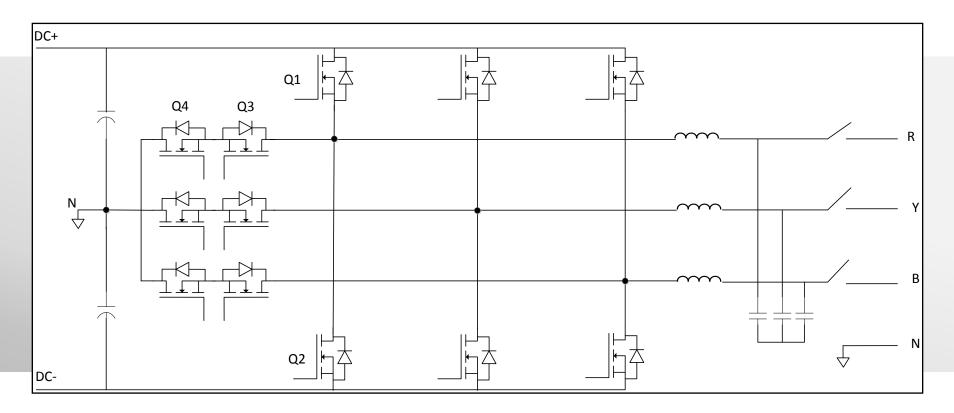
🜵 Texas Instruments

SiC: MOSFET adoption has started ...

SiC: future challenges for mass adoption


System Cost, Size, Weight Reduction	 EV/HEV need <u>4X-10X smaller size & 40%-80% weight reduction</u> SiC systems need to operate at 4X-10X higher switching frequencies compared to IGBTs ⇒ Challenge: <u>How to reduce switching losses at considerably higher frequencies</u>?
Fast Switch Protection	 SiC MOSFETs have <u>significantly reduced SC capability</u> (<3µs) compared to IGBTs (10µs) ⇒ Challenge: <u>How to protect SiC MOSFETs in <2µs in a SC/OC event</u>? SiC systems need to transition at <u>higher slew rates (dV/dt</u>) as compared to IGBTs ⇒ Challenge: <u>Need higher isolation & CMTI rated components at lower system cost</u>
EMI Reduction	 Higher switching frequencies & slew rates (<i>dV/dt</i>) would create higher Ringing & EMI ⇒ Challenge: How to reduce Ringing & EMI without increasing system cost/size/weight?
System Robustness over Lifetime	 Higher slew rates (<i>dV</i>/<i>dt</i>) would need <u>higher component derating</u>: <u>Higher system cost</u> ⇒ Challenge: <u>How to handle higher dV/dt while reducing system cost</u>? Higher slew rates (<i>dV</i>/<i>dt</i>) would <u>reduce MOSFET lifetime</u> due to higher voltage excursions ⇒ Challenge: <u>How to reduce Ringing to guarantee increased lifetime of MOSFETs</u>?

Topology and FET comparison

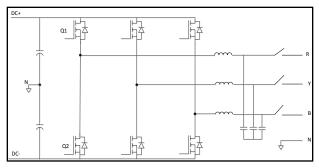


Traditional H-bridge inverter

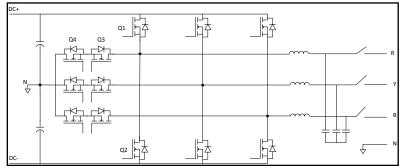
The T-type inverter

T-type advantages

Carried From H-Bridge

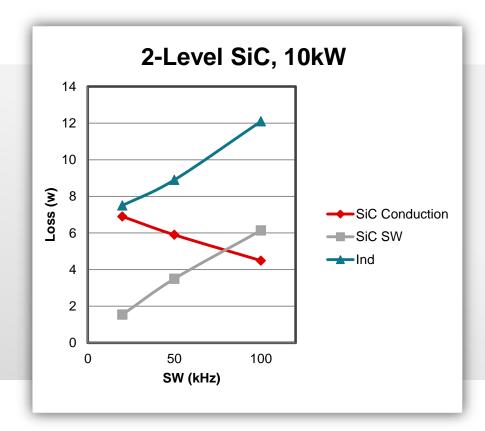

- Maintains Low Conduction Losses
- Small Part Count
- Simple Switching Operation

Upgrades to H-Bridge


- Lower Switching Losses
- Lower Output Harmonics
- Reduced Filter Size

Efficiency comparison for grid tie inverter

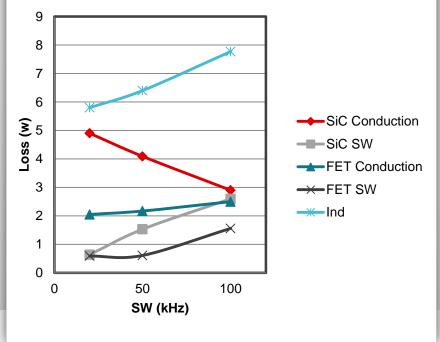
2-Level Full Bridge


3-Level T-type Inverter

Specifications AC Output:	2-Level Full Bridge (6 x SiC Mosfet - SIC1MO120E0080)		3-Level (T-type) Full Bridge (6 x SiC Mosfet - SIC1MO120E0080) (6 x IGBT – FGH60N60SMD)		3-Level (T-type) Full Bridge (6 x SiC Mosfet - SIC1MO120E0080) (6 x Mosfet – IPW65R045C7)	
3Ph 400V, 50Hz, UPF 10KW output power	SiC Mosfet Loss	9.4	SiC Mosfet Loss	5.2	SiC Mosfet Loss	5.2
DC Input:			IGBT Loss	7.887	Si Mosfet Loss	2.78
800V	3 X Inductors – 833uH		3 X Inductors – 555uH		3 X Inductors – 555uH	
Inverter:	Inductor Loss	8.9	Inductor Loss	6.4	Inductor Loss	6.4
50KHz switching frequency 20% current ripple	Efficiency		Efficiency		Efficiency	
	Total Loss	83.1	Total Loss	100.242	Total Loss	69.6
	Efficiency	99.16%	Efficiency	98.99%	Efficiency	99.3%

Loss details 2-level SiC

2-Level SiC, 10kW				
SW Speed (kHz)	20	50	100	
IND Val	2083uH	833uH	416uH	
SiC Conduction	6.9	5.9	4.49	
SiC SW	1.54	3.5	6.14	
Ind	7.5	8.9	12.1	
System Total	73.14	83.1	100.08	



Loss details 3-level SiC+MOSFET

3-Level SiC+SIFET, 10kW				
SW Speed (kHz)	20	50	100	
IND Val	1389uH	555uH	277uH	
SiC Conduction	4.9	4.09	2.9	
SIC SW	0.637	1.53	2.6	
FET Conduction	2.05	2.17	2.5	
FET SW	0.59	0.61	1.56	
Ind	5.8	6.4	7.77	
System Total	66.462	69.6	80.67	

3-Level SiC+MOSFET, 10kW

Loss details 3-level Sic+IGBT

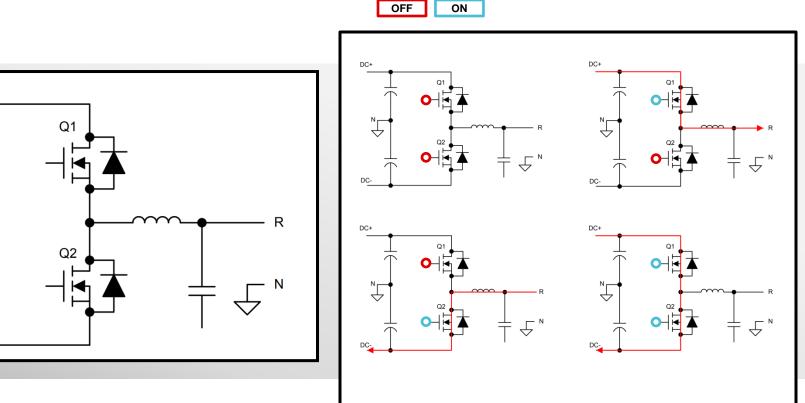
3-Level SiC+IGBT, 10kW				
SW Speed (kHz)	20	50	100	
IND Val	1389uH	555uH	277uH	
SiC Conduction	4.9	4.09	2.9	
SiC SW	0.637	1.53	2.6	
IGBT Conduction	4.77	5.107	5.1	
IGBT SW	1.11	2.78	5.58	
Ind	5.8	6.4	7.77	
System Total	85.902	100.242	120.39	

3-Level SiC+IGBT, 10kW 9 8 7 6 **(m) ssor** 4 -SiC SW -----IGBT Conduction 3 → IGBT SW -----Ind 2 0 100 0 50 SW (kHz)

IGBT over SiMOSFET

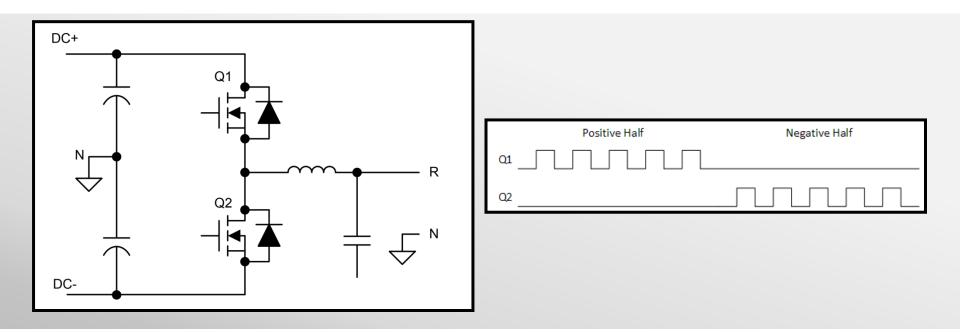
- Si MOSFET have a resistive feature which helps to reduce conduction loss at light load conditions compared with IGBT, but the high reverse recovery of the body diode will increase voltage and current overshoot. Since SiC MOSFET switches much faster than i devices, the reverse recovery is much more severe.
- Si IGBT have higher conduction loss at light load, but the reverse recovery can be lower if a fast recovery diode is used as the antiparallel diode. Moreover, since IGBT is a unidirectional device, the current will always conduct through one anti-parallel diode in T-Type topology, the light load efficiency will be reduced.

T-type conduction

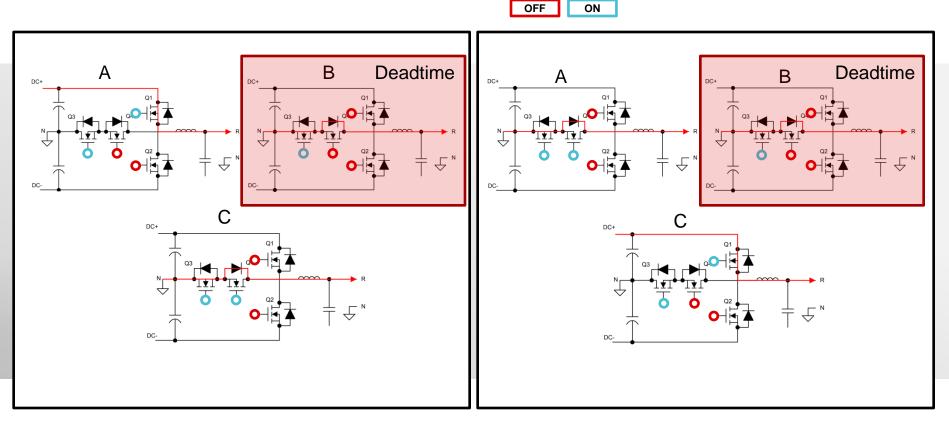


Traditional conduction

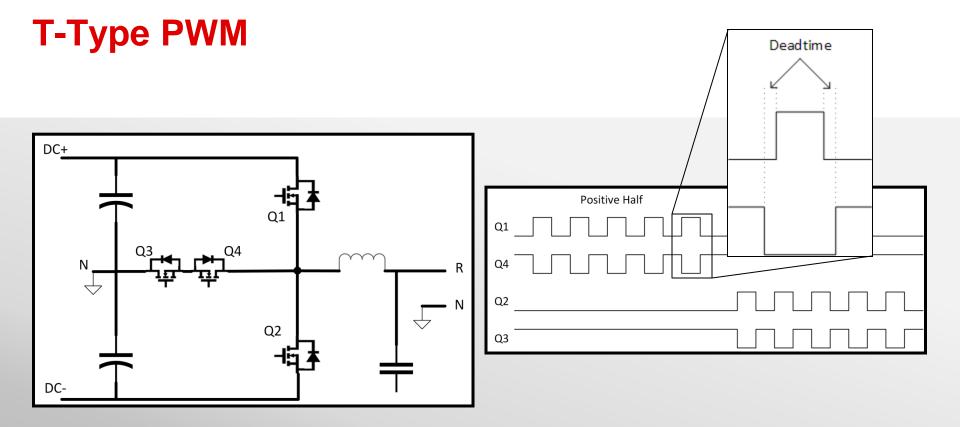
DC+


Ν

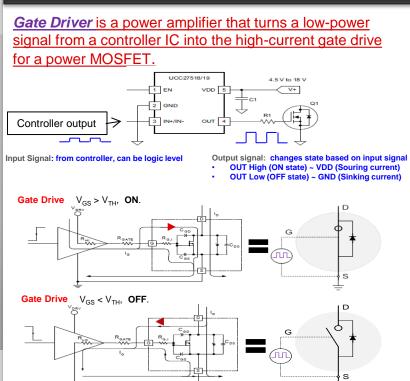
DC-



Traditional PWM



T-Type conduction



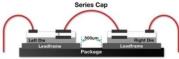
SiC gate drivers

What is a Gate Driver

Definition

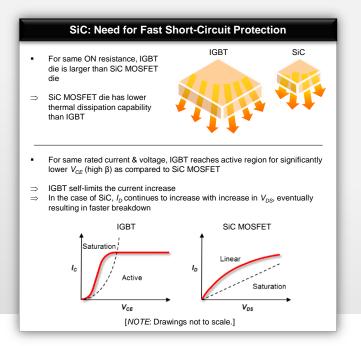
Benefits Fast charge/discharge of CGS, CGD reduces power loss in time intervals (2) (3) Therefore reduce Power Dissipation during switching MOSFET Turn-On MOSFET Turn-Off Vas V_{TH} Vps Power Loss (V_{DS}*I_D) Power Loss (V_{DS}*I_D) During 2,3 During 2,3 000 102 3 Types High side-Low side (Half-bridge) driver Low side driver Voltage Level HB-HS LO (same as Low-side Driver) LO ~ VDD-GND Voltage Level GND UCC27518/19 4.5 V to 18 V

The MOST critical requirements for a SiC driver


- Isolation (Reinforced / Basic)
- High *dV_{DS}/dt* Immunity (CMTI)
- Fast Over-current / Short-circuit Protection
- Low Propagation Delay & Variation
- High Output Drive Voltage > 25V

SiC driver: new key requirements

Requirement	Reason	
High output drive voltage: 25V-35V	Higher Efficiency: Lower conduction loss	
Tight voltage control	Gate-oxide protection	
 Margin to accommodate noise 	Gate-oxide protection	
 Negative supply voltage 	Miller turn-ON immunity (Low Vth)	
High drive strength	Higher Efficiency: Lower switching loss	
High <i>dV_{DS}/dt</i> immunity (CMTI)	Robustness for higher efficiency	

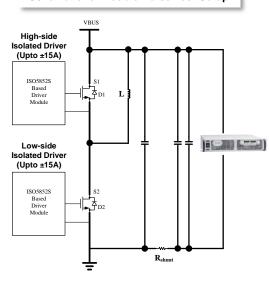

- Industry-leading Integrated Capacitive Isolation
- SiO₂ is the most stable dielectric over temperature & moisture
- Leverage advantages of TI's customized CMOS process:
 - High precision
 - Tight part-to-part skew
 - No wear out mechanisms
 - Low defect levels
 - Highest lifetime in the industry: >1.5 kV_{RMS} for 40 years
 - Superior transient protection for harsh environments: >12.8kV peak

[Link to ti.com/isolation]

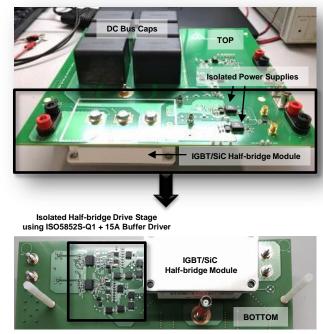
SiC driver: new key requirements

Requirement	Reason	
High output drive voltage: 25V-35V	Higher Efficiency: Lower conduction loss	
Tight voltage control	Gate-oxide protection	
Margin to accommodate noise	Gate-oxide protection	
 Negative supply voltage 	Miller turn-ON immunity (Low Vth)	
High drive strength	Higher Efficiency: Lower switching loss	
High <i>dV_{DS}/dt</i> immunity (CMTI)	Robustness for higher efficiency	
Fast short-circuit protection	Lower short-circuit capability	

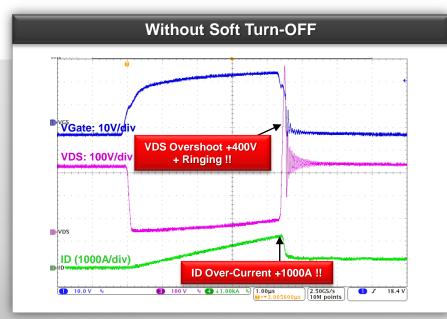
SiC driver: new key requirements

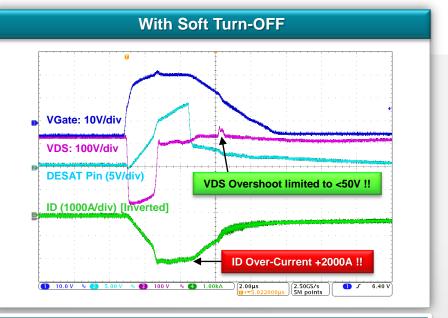

Requirement	Reason	
High output drive voltage: 25V-35V	Higher Efficiency: Lower conduction loss	
Tight voltage control	Gate-oxide protection	
Margin to accommodate noise	Gate-oxide protection	
 Negative supply voltage 	Miller turn-ON immunity (Low Vth)	
High drive strength	Higher Efficiency: Lower switching loss	
High <i>dV_{DS}/dt</i> immunity (CMTI)	Robustness for higher efficiency	
Fast short-circuit protection	Lower short-circuit capability	
Small propagation delay & variation	Higher Efficiency + Faster System Control	
Switch Temperature Sensing	Advanced switch protection	

Short-circuit protection: hardware validation

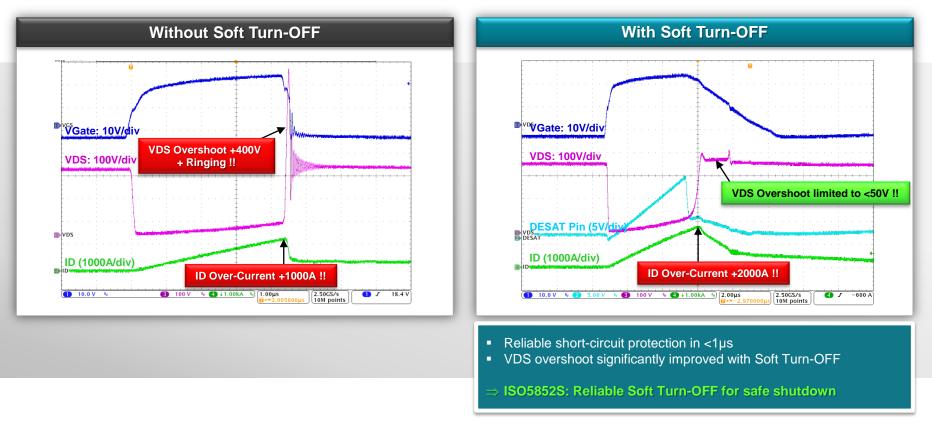

Goals

- Evaluate short-circuit protection capability through measurements using IGBT/SiC half-bridge module
- ⇒ Test feasibility of reliable short-circuit protection based on ISO5852S driver architecture
- \Rightarrow Test reliable operation of isolated driver in high drive current (up to ±15A) condition
- \Rightarrow Confirm reliable short-circuit protection of IGBT/SiC modules


Schematic for Double-Pulse Test Setup


Evaluation Hardware

Short-circuit protection: SiC: delayed load short



- Reliable short-circuit protection in <1µs
- VDS overshoot significantly improved with Soft Turn-OFF
- \Rightarrow ISO5852S: Reliable Soft Turn-OFF for safe shutdown

Short-circuit protection: SiC: turn ON into short

Reference Design for Reinforced Isolation 3-Phase Inverter with Current, Voltage and Temp Protection / TI Design : TIDA-00366

Features

- Reinforced isolated Inverter suited for 200 690V AC drives rated up to 10kW
- Simple yet effective gate driver with 4A source, 6A sink output current capability
- 250kHz isolated amplifier for Inverter current, DC link voltage and IGBT module temperature measurement
- Uncalibrated current measurement accuracy of ±0.5% across temperature range from -25°C to 85°C
- Protection against DC bus Under-Voltage, Over-Voltage, Over-Current, Ground Fault and Over-Temperature

Target Applications

- Variable Speed AC Drives
- Three-Phase UPS
- Industrial Power Supplies

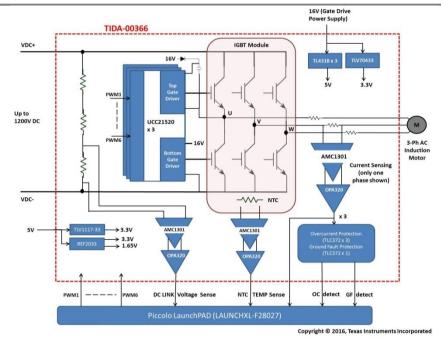
Tools & Resources

Board Image

- TIDA-00366 and Tools Folder
- Design Guide
- Design Files: Schematics, BOM, Gerbers, and more

- AMC1301

- TLV70433


- TL431B

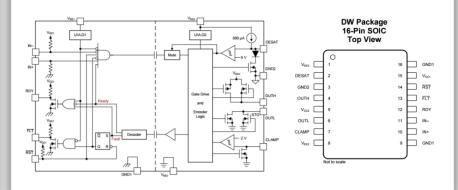
- TLV1117-33

- Device Datasheets:
 - <u>UCC21520</u> - OPA320
 - <u>TLC372</u>
 - <u>REF2033</u>

Benefits

- Using AMC1301 enables use of internal ADC of MCU
- Bootstrap based power supply for high side gate driver reduces overall cost for power supply requirements
- 19ns typical Propagation Delay optimizes dead band distortion

ISO5852S +2.5A/-5A, Isolated, High CMTI, Miller Clamp


Features

- Integrated SiO₂ Dielectric Capacitor
 - CMOS compatible logic input threshold
 - Safety Features: Miller Clamp, Desat Detect, UVLO, Fault feedback, Ready status feedback, auto soft-shutdown on short
 - +2.5/-5A Peak Source/Sink Split Outputs
 - 120 kV/µs CMTI (typ) / 100 kV/µs (min)
 - 30ns Integrated Glitch Filter
 - 110 ns (max) Prop Delay
 - 4kV ESD on all pins
- Immunity and Certifications
 - 12.8 kVpk Surge (8 kV V_{IOSM}) per VDE Reinforced Isolation
 - 5.7 kVrms Isolation rating per UL1577
 - 8000 Vpk V_{IOTM} (transient) and 2121 Vpk V_{IORM} (working voltage) per VDE0884-10
 - Enables IEC61800-5-1, IEC60664-1 & IEC62109-1
- Power and Package
 - Wide V_{CC2} Range: 15V-30V
 - 16-pin Wide SOIC Package (>8mm Creepage)
 - Extended Temp: -40 to 125 °C

Benefits

- · Component-level Reinforced rating
- Improved system performance
- Enabling low power & efficient solutions
- High Immunity for Noisy Environments
- High Reliability in Harsh Environments
- Certified by all 3 World Wide agencies

PART #	Split outputs	Soft Turnoff	UVLO+/ UVLO- (typ)	PKG
ISO5852S	Yes	Yes	11.6/10.3	16DW

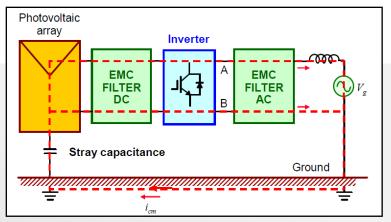
🚘 : AEC-Q100

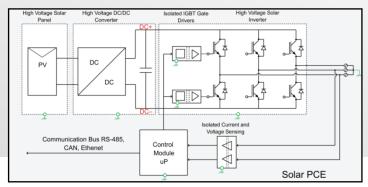
UCC5320ECD, UCC5320SCD, UCC5320SCDWV

2A/2A Single-Channel Isolated Gate Driver with Split Output (S) or for Bipolar Supply (E)

Features	Benefits	
 Integrated SiO₂ Dielectric Capacitor 2A/2A Peak Source/Sink Drive >100 kV/us CMTI 100 ns Propagation Delay (max) Negative voltage handling on input pins (-5V) 4kV ESD on all pins Immunity and Certifications Basic and Reinforced Isolation Safety-related certifications: 	 Family (UCC53x0) with different construction of the UCC53x0SCD allows control of the UCC53x0ECD has UVLO2 reference bipolar supplies Enabling low power & efficient solutions Improved system performance 	e and fall time of driver. Iced to GND2 which facilitates
 Body SOIC (8mm Creepage) 3V to 15V input supply range 	GND1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GND1 4 8 V _{ET2}

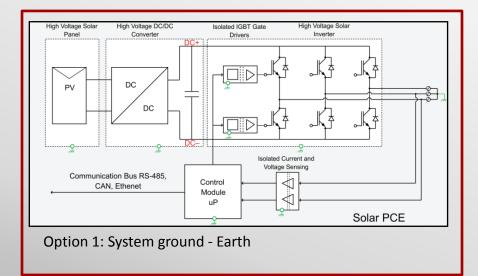
System grounding and isolation

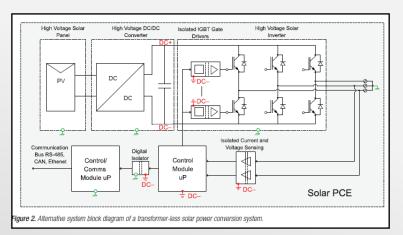



Compliance standard for leakage currents

According to the German standard **VDE 0126-1-1**, there are three different currents that have to be monitored:

- **Ground Fault current**, which happens in case of insulation failure when the current flows through the ground wire;
- **Fault current**, which represents the sum of the instantaneous values of the main currents, that in normal conditions leads to zero;
- Leakage Ground currents, which is the result of potential variations of capacitive coupled parasitic elements


The standard states that disconnection from the grid is necessary within 0.3s in case the leakage current is higher than 300mA

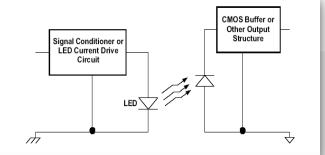


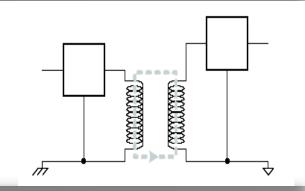
System isolation



Option 2: System ground – DC-

Isolation technologies

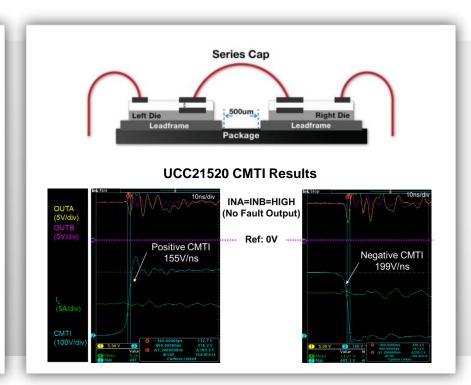

Optical & magnetic isolation: major drawbacks


Optical Isolation: Major Drawbacks:

- Low performance
 - Long propagation times
 - Higher quiescent current
- Low robustness and reliability
 - Low noise immunity: Low common mode transient immunity
 - LED Degradation associated with temperature and age

Magnetic Isolation: Major Drawbacks

- Low robustness
 - Lower working voltage → Translates to limited applications
 - Low noise immunity: Low common mode transient immunity
 - High EM emissions noise issues
- Lower reliability
 - Higher quiescent current
 - Insulator degradation over time


✓ Capacitive isolation technology does not suffer from the above drawbacks

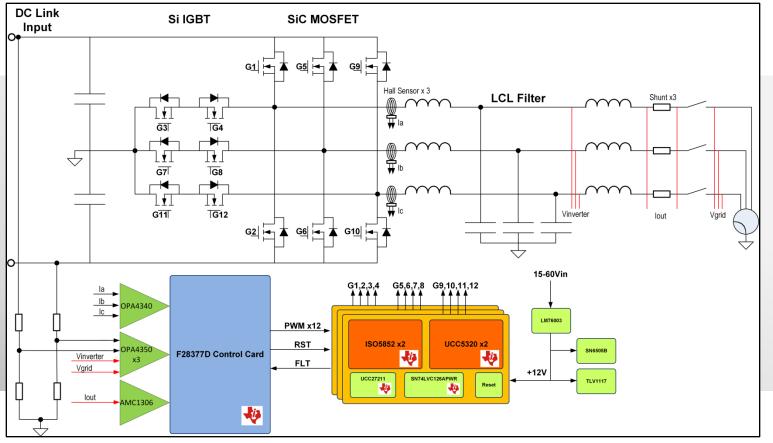
TI's capacitive signal isolation technology

- Industry-leading Integrated Capacitive Isolation
- SiO₂ is the most stable dielectric over temperature & moisture
- Leverage advantages of TI's customized CMOS process:
 - High precision
 - Tight part-to-part skew
 - No wear out mechanisms
 - Low defect levels
 - Highest lifetime in the industry: >1.5 kV_{RMS} for 40 years
 - Superior transient protection for harsh

environments: >12.8kV

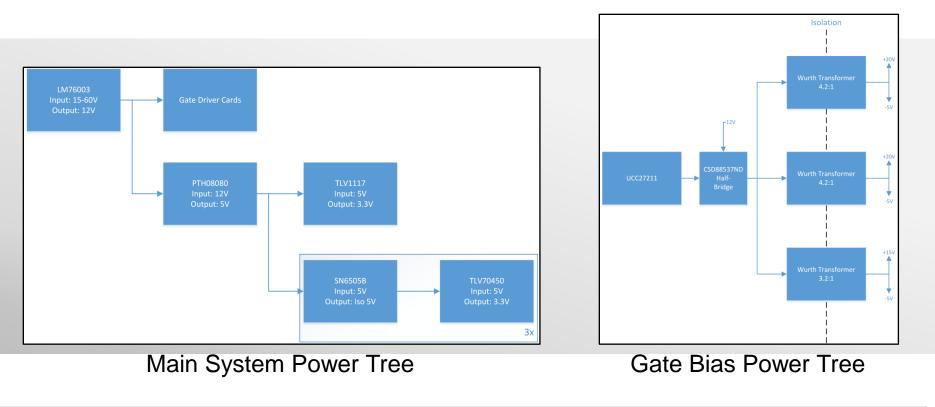
TIDA-01606 system design

Specifications


		10/10
	Power (KW/KVA)	10/10
	PF rated/adjustable	1/0.7lag to 0.7lead
	Grid Voltage (L-L)	400V ± 20%
AC Output	No of Phases	3
	Frequency	50/60Hz ± 5Hz
	Current (Max)(A)	18
DC Input	Nominal Voltage (V)	800
	Rated Min/Max Voltage (V)	600/1000
Derfermenee	Efficiency (peak/European)	98.5%
Performance	Output current THD	<2%
	Off Grid operation	No
Other Specs	Operating temperature	-25°C to +60°C
	Thermal management	Forced air cooling

Target End Equipment's

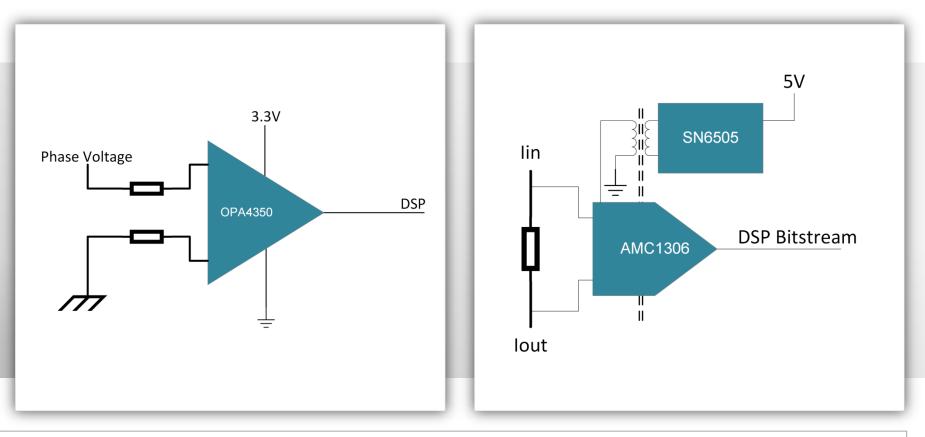
String Inverters – Residential/Commercial



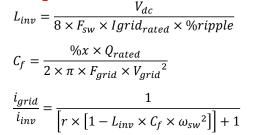
Topology & system architecture



System power topology

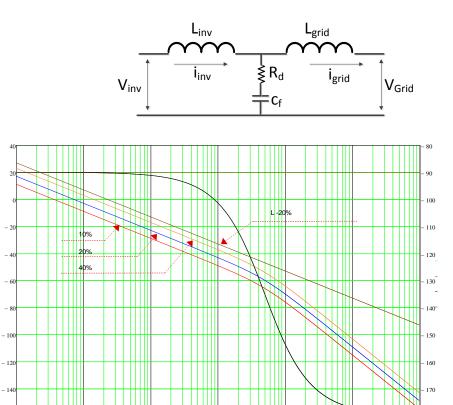


Gate driver detail



Voltage and current sensing

Output filter design



$$L_{grid} = r \times L_{inv}$$

$$R_{d} = \frac{1}{\left[2 \times \pi \times F_{res} \times C_{f}\right] \times 3}$$

LCL Filter	%ripple			
LCL Filter	10	20	40	
Linv(μH)	1386	692	346	
Cf(µF)	9.95	9.95	9.95	
Lgrid(µH)	9.17	9.18	9.19	
Filter Gain @ Fsw (dB)	-65.7	-59.8	-53.9	
Rd	0.319	0.318	0.316	
Power loss in Rd(W)	0.22	0.387	1.043	
THD(%)	0.36	0.722	1.443	

Choose Igrid to linv attenuation and calculate 'r', chosen 10% for above calculations

104

k

k 10⁵

k 10³

-40

-60

- 80

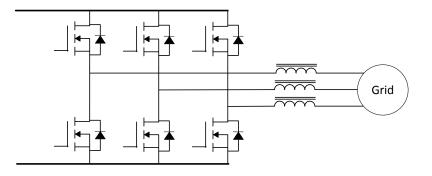
-100

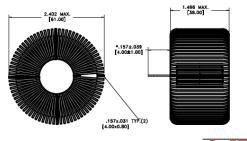
10

10

100

TEXAS INSTRUMENTS Jia


106


k

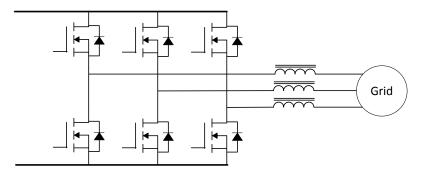
107

k

50kHz inductor design

• 61mm(d) x 38mm(h)

340uH


•

 $L_{inv} = \frac{V_{DC}}{8 \times f_{sw} \times I_{grid} \times \mathscr{V}_{ripple}}$ $L_{inv} = 346 u H$ $R_{AC} = 0.087 \Omega$ $R_{DC} = 0.024 \Omega$ $P_{ind_loss} = 5.64 W$

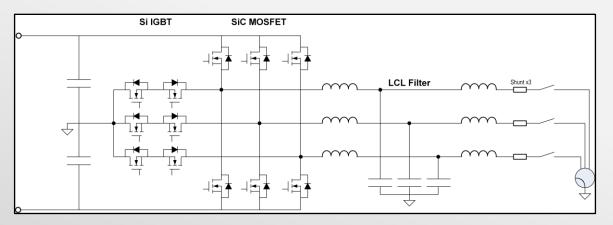
Rated RMS Current	15A
Peak Current	24A
Core	Kool Mu 26
Windings	84 turns 12AWG Flat

SiC MOSFET loss estimation

Expertise Applied Answers Delivered	SiC MOSFET LSIC1MO120E0080, 1200 V, 80 mOhm, TO-247-3L	PRELIMINARY & CONFIDENTIAL Underland, find, fair fair of the fair
LSIC1M0120E0080	1200 V N-channel, Enhancement-mode SiC MO	SFET HF Rohs 🕑

More details required

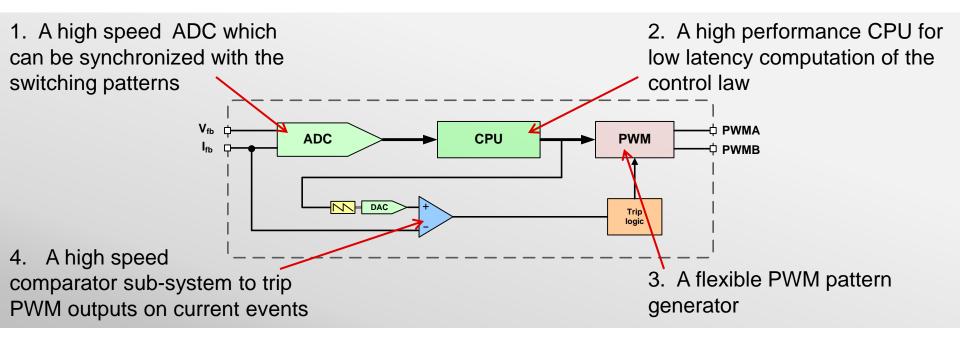
- Eon, Eoff vs Ids at high temperature
- Qrr of diode vs Isd


Specs used for loss estimation

AC Output	DC Input	Inverter
$V_{Grid} := 400$ $P_{out} := 10000$ %load := 110%	Vin := 600 Vin _{min} := 600 Vin _{max} := 1000	$F_{sw} := 50000$ %ripple := 10% $Vg_{pos} := 18$ $Vg_{neg} := 5$
$KVA_{out} := 10000.\%$ load $F_{out} := 50$ $PF_{out} := 1$ $Iout_{max} := 18$		

Switch conduction loss Switching Loss		4.095
		1.536
Conduction loss		0
reverse recovery loss		3.21E-03
Total Loss/Switch (W)		5.63W

Total system losses


IGBT Loss	SIC Loss	Inductor Loss	Total / Phase	System Total
7.56W	5.63W	5.64W	32.02W	96.06W

Control loop software

Digital power control requirements

Delfino[™] TMS320F2837xD

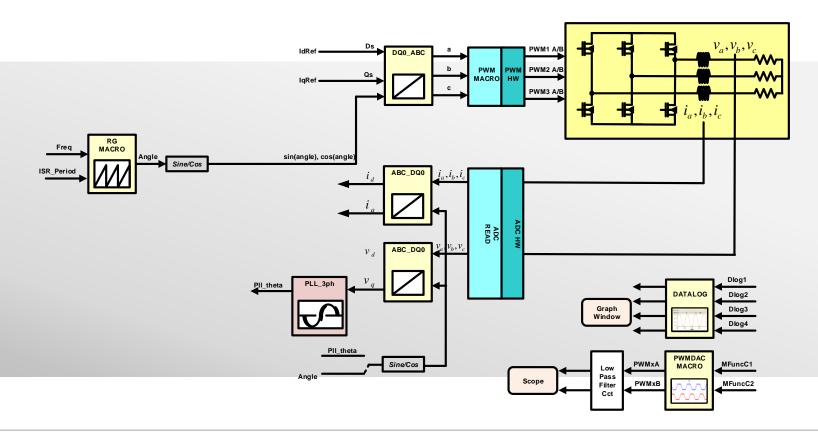
Features

- 800MIPS real-time performance of dual C28x core with dual CLA co-processors to run parallel control loops
- 4 differential 16-bit ADC, 1MSPS each and 3x 12-bit DAC
- Trigonometric Math Unit (TMU) 1 to 3 cycle SIN, COS, ARCTAN instructions
- Direct memory access through dual EMIFs (16bit/32bit)
- Protection with 8x Windowed Comparators and X-Bar
- 8 Sigma Delta Decimation Filters to enable sensing across the isolation boundary

Tools

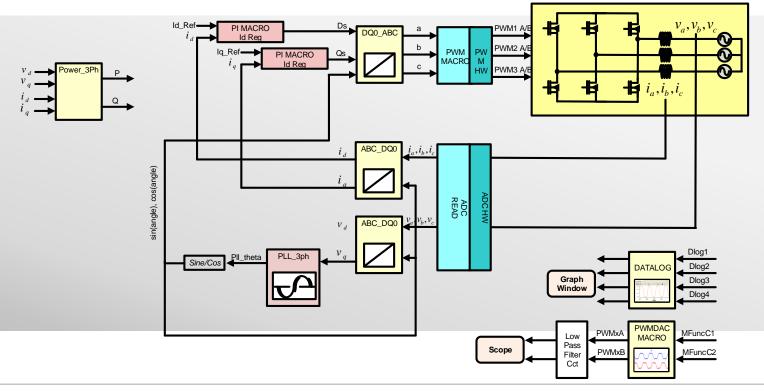
TMS320F28379D Experimenter's Kit

Part Number: TMDXDOCK28379D



TMS320F2837	xD Te	emperatures	105C	125C	Q100
Sensing	Processing	Processing		Actuatio	n
ADC1: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS	C28x™ DSP core	C28x™ DSP core		2x ePWM Module: 4x Outputs (16x H	
ADC2: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS	200 MHz	200 MHz		Fault Trip Zo	
ADC3: 16-bit, 1.1-MSPS	FPU	FPU		3x 12-bit DA	AC
12-bit, 3.5 MSPS	TMU	TMU		Connectiv	/ity
ADC4: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS	VCU-II	VCU-II		4x UART	
8x Windowed Comparators w/ Integrated 12-bit DAC	CLA DSP core	CLA DSP core 200 MHz	2x I2C (w/ true PMBus) 3x SPI		
8x Sigma Delta Interface	200 MHz		2x McBSP		
Temperature Sensor	Floating-Point Math	Floating-Point Math		2x CAN 2.	0
3x eQEP	6ch DMA	6ch DMA	US	SB 2.0 OTG FS M	AC & PHY
6x eCAP	Memory	Memory		uPP	
System Modules	Up to 512 KB Flash	Up to 512 KB Flash		Power & Clo	cking
3x 32-bit CPU Timers				2x 10 MHz C	SC
NMI Watchdog Timer	Up to 102 KB SRAM	Up to 102 KB SRAM		Ext OSC Inp	out
2x 192 Interrupt PIE	2x 128-bit Security Zones			Debug	
	Boot ROM			Real-time JT	AG
	2x E	MIF			

Packages		
Package	Dimension	
176-pin HLQFP	24x24mm ²	
337-pin NFBGA	16x16mm ²	



Open loop control software

Grid connected control software

TI control loop features

Includes

- All filter blocks tested
- Feedback sensing validated
- Hardware control validation
- Basic grid connected current feedback control loop

Left to the Customer

- P&Q Control
- DC Bus Regulation
- Unbalanced Load Control
- Anti-Islanding
- Additional Safety Features

TIDA-01606 overview

TIDA-01606

10kW 3-Phase 3-Level Grid Tie inverter reference design for solar string inverter

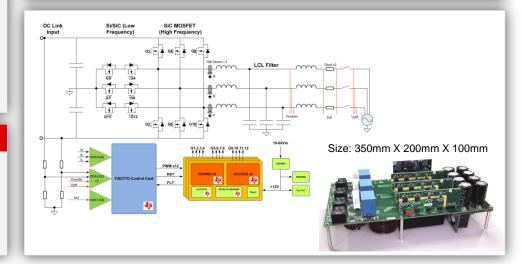
Design Features

- 10kW 3-Phase 3-Level inverter using SiC MOSFETs
- System Specifications:

Output Power

Efficiency

Input


- : 800V/1000V
- : 400VAC 50/60 Hz
- : 10KW/10KVA
- : > 99% peak efficiency v : 50kHz
- PWM frequency
- Uses ISO5852, UCC5320 gate driver & C2000 MCU controller
- Uses Littelfuse LSIC1MO120E0080 1200V 80mOhms SiC MOSFETS
- Reduces output filter size by switching inverter at 50KHz
- Isolated current sensing using AMC1306 for load current monitoring
- Differential voltage sensing using OPA4350 for load voltage monitoring
- Targets less than 2% output current THD at full load

Tools & Resources

- TIDA-01606 Tools Folder
- Test Data/Design Guide
- Design Files: Schematics, BOM and BOM Analysis, Design Files
- Key TI Devices: UCC5320, ISO5852, AMC1306, SN6505, TMS320F28379D, OPA4350, OPA350, LM76003, PTH08080WAZT, UCC27211

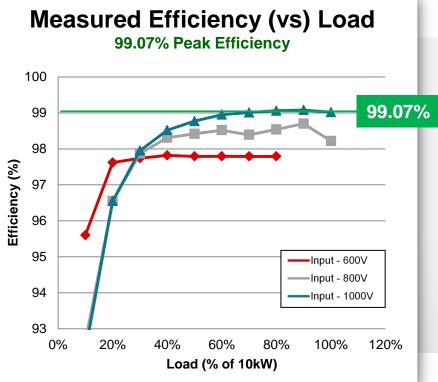
Design Benefits

- 3-Level T-type inverter topology for reduced ground current in transformer-less grid-tie inverter applications
- Reduced size at higher efficiency using low Rdson SiC MosFET and higher switching frequency (50kHz) at higher power (10kW)
- Platform for testing both 2-level and 3-level inverter by enabling or disabling middle devices through digital control.

Key TI parts

TI Part Number	Device Description	Why did we pick this device?
ISO5852S	5A/5A, 5.7Vrms Isolated Single Channel Gate Driver	High current source/sink with bipolar supply voltage best fit for driving SiC Mosfet.
TMDSCNCD28379D	Dual-Core Delfino Microcontroller	Standard 180pin form factor control card with C2000 controller provides enough bandwidth for complete digital control of 3phase inverter.
AMC1306M05	Precision, ±50mV Input, 3µs Delay, Reinforced Isolated Amplifier	Replaces bulky low frequency CT with shunt for measuring 50/60Hz current.
OPA4350	High-Speed, Single-Supply, Rail-to-Rail Operational Amplifiers	Low noise with high slew rate ideally suited for high frequency input signal conditioning.

Key hardware



Total Size: 350mmx 200mm x 100mm

Testing results

Summary

- 99.07% Peak Efficiency at 8kW
- **99.02%** Efficiency at **10kW**
- 1.4kW/l

Measured Results Summary		
SYSTEM PARAMETER	VALUE	
Input Voltage	600-1000Vdc	
Output Voltage	400VAC 50/60Hz	
Maximum Power	10kW	
PWM Frequency	50kHz	
Efficiency (Peak)	99.07% @ 8kW	
Efficiency (Full Load)	99.02% @ 10kW	
Size	350mm x 200mm x 100mm	

