POWER DISTRIBUTION FOR SOC AND FPGA APPLICATIONS

WHAT SPECS TO LOOK FOR

Detailed Agenda

Power Distribution for SoC and FPGA applications:

Microprocessors and Programmable Logic require several voltage supply rails, often with tight regulation accuracy and sequencing requirements. It's of key importance to identify the specs of those rails and their challenges, in order to address them with the right power devices.

- SoCs power requirements
 - System overview
 - Typical SoC's and FPGA specs
 - Electrical specifications: DC and AC accuracy
 - Devices performances comparison example

Typical SoC Supply Rails

Typical System Architectures

Intermediate Rail	Advantage	Disadvantage
12V	Lower input current	Lower efficiency conversion to POL Possible duty cycle limitation
5V	Higher efficiency conversion to POL	Higher input current compared to 12V
3.3V	Higher efficiency conversion to POL	Hignest input current Fewer available parts (min Vin range)

CPU+FPGA SoC Typical Power Specs

- Example:Xilinx Zynq XC7Z020
 - CPU max frequency 766 MHz
 - Artix-7 FPGA
 - 220 Programmable DSP slices
 - DSP Performance: 276 GMACs
- Current consumption is based on Xilinx Power Estimator (XPE) under these conditions:
 - F=400MHz
 - Logic enabled 100%
 - Logic toggled 25%
- Regulation Accuracy is Critical!

PIN	Description	Voltage (V)	Current (A)	Sequencing
VCCINT	PL core	1 ±5%	4.7	
VCCPINT	APU core	1 ±5%	0.2	1
VCCBRAM	PL block RAM/FIFO	1 ±5%	0.05	
VCCAUX, VCCBATT	PL auxiliaries	1.8 ±5%	0.5	
VCCPLL	APU PLL	1.8 ±5%	0.01	2
VCCPAUX	APU auxiliaries	1.8 ±5%	0.010	
VCCO1	PL HR IOs	1.8	0.2	
VCCO2	(2+2 banks)	3.3	0.2	3
VCCO_DDR	APU Internal DDR	1.35	0.01	

Output Voltage Accuracy

Power supply performance is considered under two operating conditions:

- Static: Fixed/gradual changes (DC)
- Dynamic: Quick changes (AC)

See also: http://www.powerelectronics.com/regulators/optimal-transient-response-processor-based-systems

Static: Output voltage accuracy (DC)

Influencing Parameters:

- Reference voltage Vref accuracy
- Feedback divider resistors tolerances
- Load and line regulation due to Error's Amplifier finite gain.

Vout	Load regulation	V _{OUT} = 3.3 V PWM mode operation	0.05 %	/ A
Vout	Line regulation	$3V \leq V_{\text{IN}} \leq 17$ V, V_{OUT} = 3.3 V, I_{OUT} = 1000 mA PWM mode operation	0.02 %	/∨

 Non ideal Vout sensing and PCB traces effects (uncompensated DC losses)

Static: Examples for a 1.8V output

Based on: http://www.ti.com/lit/an/slva423/slva423.pdf

$$\Delta V_{out} / V_{out} \cong \pm 2T_R \left(1 - \frac{V_{ref}}{V_{out}} \right) + T_{V_{ref}}$$

$$\begin{split} T_{\text{R}} &= \text{Tolerance of Resistors in \%} \\ T_{\text{Vref}} &= \text{Tolerance of Reference Voltage in \%} \\ V_{\text{ref}} &= \text{Reference Voltage of IC} \\ V_{\text{out}} &= \text{Set output voltage} \end{split}$$

	Example 1	Example 2	Example 3	Example 4	
T _R	1%	0.1%	1%	0.1%	
T_{Vref}	2%	2%	2%	1%	
V _{ref}	0.8V	0.8V	0.7V	0.8V	
V _{out}	1.8V	1.8V	1.2V	1.8V	
Error	3.1%	2.1%	2.83%	1.1%	

Highest Margin for load regulation and AC tolerance

The line and load regulation need to be added on top!

Static: Minimizing DC Loss

DC loss is the voltage drop due to non ideal sensing. This issue can be reduced by means of:

Remote Sense

 R1 is connected as close as possible to the FPGA core supply pin (note: FPGAs have usually more than one core supply pin and they are often found in BGA packaging formats)

• Wide/thick copper traces

- reduced output resistance
- Place power supply close to FPGA supply input
 - shorter traces reduce resistance, as well as inductive loops.

Static: Minimizing DC Loss Example: TPS62480 layout with Xilinx Zynq XC7Z020

- More than one pin for the FPGA supply VCCINT (yellow traces circled in blue)....which pin should we sense?
- Placing the TPS62480 close to FPGA and using wider traces minimizes DC losses.
- Here TPS62480 is used also for the DualCore CPU supply (VCCPINT).

Calculation Example for Core supply : Static

TPS62135 for Altera MAX 10 FPGA

Rail Requirement				
Intermediate rail	12 V			
Core Voltage	1.2V			
Tolerance	5%			
Max current	4A			

TPS62480 for Xilinx Zynq XC7Z020

Rail Requirement				
Intermediate rail	5V			
Core Voltage	1V			
Tolerance	5%			
Max current	6A			

Calculation Example for Core supply : Static

TPS62135 Datasheet	Target Vout=1.2V		TPS62480 Datasheet	Target Vout=1V
Vref	0.7V		Vref	0.6V
Tolerance Vref	1%	Tolerance Vref		1%
Tolerance resistors	0.1%		Tolerance resistors	0.1%
Load regulation	0.05 %/A		Load regulation	0.02%/A
$\Delta V_{out}/_{V_{out}} \cong \pm$		$2T_R\left(1-\frac{V_{ref}}{V_{out}}\right)+T_{V_{ref}}+$	Load regulation	
Contributes			Contributes	
Tolerances	1.08%	<	Tolerances	1.08%
Load regulation @4A	0.2%	3.7% (and plus)	Load regulation @6A	0.12%
Total	1.28%	AC margin!!!	Total	1.20%

Output Voltage Accuracy

Power supply performance is considered under two operating conditions:

- Static: Fixed/gradual changes (DC)
- Dynamic: Quick changes (AC)

See also: http://www.powerelectronics.com/regulators/optimal-transient-response-processor-based-systems

Dynamic: Output voltage accuracy (AC)

Load Transient response

- Influencing Parameters:
 - ≻Slope (A/us)
 - ≻Step size (A)
 - Control Topology

 Voltage Mode
 Current Mode
 Hysteretic
 DCS-Control

≻Output Filter

Texas Instruments

Dynamic: Output Capacitor Network

- No external compensation needed, enables faster design cycles
- Optimized internal compensation minimizes transient response
- Only input/output capacitors must be selected, according to Datasheet's guidelines
 Suggested on

High Bandwidth converter eliminates the need of low freq. bulk cap

Complete and **effective decoupling network** Ceramic X5R and X7R dielectrics are great choices

Dynamic: TPS62480 on Xilinx Zynq® 7000

Why is PWM mode operation crucial for FPGAs ?

FPGA support webpage

www.ti.com/powerfpga (best use with Chrome)

Power Management for FPGAs and Processors

Overview

With its robust and diverse portfolio of LDOs, power modules, DC/DC switchers, and PMICs, TI combines easy-to-use solutions with system expertise to help you find the perfect power supply match for your processor or FPGA.

What type of processor or FPGA are you powering?

Complete solutions for a large variety of **MicroProcessors and MicroControllers**

Texas Instruments	Xilinx	Altera (intel)		
This site features power supply suggestions for the following families of Texas Instruments processors: Sitara™, MSP430™, OMAP, C6000, and more.	Xilinx® FPGAs discussed on this site include: Kintex® UltraScale [™] , Virtex [®] UltraScale [™] , Virtex ^{®,7} , Kintex ^{®,7} , Artix ^{®,7} , Spartan ^{®,6} , Zynq [®] Ultrascale+ [™] MPSoC, the Zynq ^{®,7} 000 Extensible Processing Platform (EPP), and more. Attach a power supply >	The Altera® product portfolio includes the following FPGA series: Stratix®, Cyclone®, Arria®, MAX®. Attach a power supply >		
NXP/Freescale	Intel CPU	Other processors		

FPGA support webpage

www.ti.com/powerfpga
(best use with Chrome)

- PMIC and Discrete solution for each Power Rail
- Adaptive according to different application specs (System's Input Voltage and Rail's Load Current)

Power for Altera FPGAs

TI is the approved and tested vendor of power solutions for the Altera[®] FPGAs and CPLDs. TI works closely with Altera to recommend the best power management solutions for a wide variety of applications, such as embedded memory, digital signal processing (DSP) blocks, high-speed transceivers, or high-speed I/O pins. TI can recommend product solutions for the following Altera FPGA series: Stratix[®], Cyclone[®], Arria[®], and MAX[®].

Find the right TI devices for your Intel/Altera solution

Pick a device for each Point-of-Load (POL) power requirement:

Hover on a part number to see more information

e accimiciple obtains							
Paulan Panulinananta	Sequence #*	Loads**	Solution Options by Regulator Type				
Fower Requirements			LDOt	Module	DC/DC Converter	Controller	PMIC
Power Supply: #1 Output Voltage: 1.2V Load Current: 2.5A (Med) V		VCC VCCIO#5 VCCIO#7 VCCIO#7 VCCIO#1 VCCIO#2 VCCIO#4 VCCIO#4 VCCIO#4 VCCD_PLL VCCINT		LMZ31503	TPS62135		TP565218
Power Supply: #2 Output Voltage: 2.5V Load Current: 0.03A (High) V		VCCA_ADC VCCA	TLV73325P				

See Multiple Options

TEXAS INSTRUMENTS

© Copyright 2018 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com