
Hercules™ ARM® Cortex®-R4
System Architecture

Processor Overview

• Broad Safety MCU Portfolio
– CPU performance from 80MHz to 330MHz
– Flash memory options ranging from 128KB to 4MB

• High Reliability
– Proven hardware based on 20+ years of TI safety-critical
 system expertise
– Development flow refined for high quality & low DPPM

• Reduce Systematic and Random Faults
– Development flow certified to IEC61508 & ISO26262
– Integrated diagnostics protect against random faults

• Time To Market
– Hardware safety features reduce software development
– Tools, software and safety documentation

Scalable Memory
& Peripherals

Hercules™ Hardware Safety Features

• 128KB to 4MB of Embedded
 Flash Memory
• 10-Bit & 12-Bit ADCs

• Ethernet, USB, FR, CAN, LIN,

• SPI, I2C, UART, NHET

• Lockstep CPU Architecture

• CPU & RAM Built in Self Test

• RAM & Flash ECC

• Clock & Voltage Monitoring

• ARM Cortex-R4F and R5F CPUs

• Up to 330MHz

• IEC 61508 & ISO 26262 Safety

• Automotive AEC Q100 Qualification

• Development kits starting under $20

What is Hercules™?
TI’s 32-bit ARM® Cortex™-R4/R5 MCU family for Industrial, Automotive, and Transportation Safety

2

Hercules™ MCUs
Scalable platform for functional safety applications

Production

External certification: ISO 26262, IEC 61508

Documentation: Safety Manual, FMEDA reports

Software: Drivers, libraries, RTOS, Autosar, tools, debug

Development Kits: LaunchPad, HDK, SafeTI CSP, SafeTI CQK

RM41L2
80MHz
128kB Flash
32kB RAM

100p QFP

RM42L4
100 MHz
384kB Flash
32kB RAM

100p QFP

RM46L8
220 MHz
1.2MB Flash
192kB RAM

144p QFP
337p BGA

RM48L9
220 MHz
3MB Flash
256kB RAM

144p QFP
337p BGA

RM57L
330 MHz
4MB Flash
512kB RAM

337p BGA RM48L7
200 MHz
2MB Flash
256kB RAM

144p QFP
337p BGA RM44L9

180 MHz
1MB Flash
128kB RAM

100p QFP
144p QFP

RM44L5
180 MHz
768K Flash
128kB RAM

100p QFP
144p QFP

570LS03
80 MHz
256kB Flash
32kB RAM

100p QFP

570LS04
80 MHz
384kB Flash
32kB RAM

100p QFP

570LS07
160 MHz
768kB Flash
128kB RAM

100p QFP
144p QFP

570LS02
80 MHz
128kB Flash
32kB RAM

100p QFP

570LS09
160 MHz
1MB Flash
128kB RAM

100p QFP
144p QFP

570LS12
180 MHz
1.2MB Flash
192kB RAM

144p QFP
337p BGA

570LS31
180 MHz
3MB Flash
256kB RAM

144p QFP
337p BGA

570LC43
300 MHz
4MB Flash
512kB RAM

337p BGA

Cortex-R: Ideal for safety-critical applications
Safety features
• Supports Lockstep
• Memory Protection Unit (MPU)
• Error-Correcting Code (ECC)

Higher performance
• 8-stage processor pipeline
• Dual issue – two instructions can

execute in parallel
• Load store unit reduces stalling
• Pre-fetch and Branch Prediction Units
• Cached*

Real-time / determinism
• Tightly Coupled Memory (TCM)
• Fast interrupt response
• Deterministic interrupt response

Output + Control

Cycle Delay

CCM

Compare
Error

Input + Control

Self
Test

Cycle Delay

Lockstep implementation

Cortex-R4 features

• ARMv7-R architecture, supports ARM and Thumb2 instruction sets
• 8-stage processor pipeline
• Pre-fetch and Branch Prediction Units
• Floating-Point Unit
• Fast interrupt response
• Tightly Coupled Memory (TCM) with ECC
• Memory Protection Unit (MPU)
• Performance Monitoring Unit (PMU)

Cortex-R4 Hercules Processor
Prefetch unit

• Fetches instructions from the TCMs, or external
memory

• Predicts the outcome of branches in the instruction
stream

Data Processing Unit (DPU)
• Decodes and executes instructions
• Interfaces with LSU to transfer data to or from the

memory system
• Holds general-purpose registers, status registers and

control registers (CP15, CP14, etc.)
Load/store unit

• Manages all load & store operations, interfacing with
 the DPU, TCMs, and memory

AXI master interface
• Provides a high-bandwidth interface to on-chip RAM,

peripherals, and interfaces to external memory
• Consists of a single AXI port with a 64-bit read/write

channel for instruction & data fetches
• Can run at the same frequency as the processor

DMA

Cortex-R4 processor structure

Pipeline

64-bit

The following stages make up the pipeline:
• Fetch stages (Fe1, Fe2)
• Pre-Decode and Decode stages (Pd, De)
• Issue stage (Iss)
• Execution stages (Ex1, Ex2, etc.)

Floating Point Unit (FPU)
• FPU is compliant to IEEE754

• 16 double-word (64 bits) registers

• 32 single-word (32 bits) registers

• Supports features:

– Single-precision and double-precision add, subtract, multiply, divide, multiply and accumulate,

and square root operations

– Conversions between fixed-point and floating-point data formats, etc

– Comparisons

– Underflow

– Exceptions

Processor modes
• ARM has 7 basic operating modes.

• Modes other than user mode have
privileged access rights.

• Usually the initial setup is done in SVC
mode after reset, then switch to
system or user mode afterwards.

• Privileged access rights are needed to
access certain configuration registers in
the processor and peripherals. For
example, CP15, flash control registers.

• Cortex-R MCU has MPU, which can be
used to set the memory access rights
for certain regions.

 E

xc
ep

tio
n

m
od

es

Mode Description
Supervisor
(SVC)

Entered on reset and when a
Software Interrupt instruction
(SWI) is executed

Privileged
modes

Undef Used to handle undefined
instructions

Abort Used to handle memory
access violations

FIQ Entered when a high priority
(fast) interrupt is raised

IRQ Entered when a low priority
(normal) interrupt is raised

System Privileged mode using the
same registers as User mode

User Mode under which most
Applications / OS tasks run

Unprivileged
mode

Processor registers
User/System

mode
FIQ mode IRQ mode Supervisor

mode
Abort

Exception
Undefined
Instruction

R1

Current Program
Status Register (CPSR)

R3
R2

R0

R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 SP
R14 LR
R15 PC

CPSR

R1

R3
R2

R0

R4
R5
R6
R7
R8 FIQ
R9 FIQ
R10 FIQ
R11 FIQ
R12 FIQ
R13 FIQ
R14 FIQ
R15 PC

CPSR
SPSR FIQ

R1

R3
R2

R0

R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 IRQ
R14 IRQ
R15 PC

CPSR
SPSR IRQ

R1

R3
R2

R0

R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 SVC
R14 SVC
R15 PC

CPSR
SPSR SVC

R1

R3
R2

R0

R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 ABORT
R14 ABORT
R15 PC

CPSR
SPSR ABORT

R1

R3
R2

R0

R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 UNDEF
R14 UNDEF
R15 PC

CPSR
SPSR UNDEF

Stack Pointer (SP)
Link Register (LR)

Program Counter (PC)

Saved Program
Status Register (SPSR)

Current Processor Status Register (CPSR)

• Condition Code Flags
N = ALU Negative result
Z = ALU Zero result
C = ALU Carry out
V = ALU arithmetic overflow
Q = ALU sticky overflow

• J = Java state bit (always reads 0)

• IT[7:0] = If-Then

• DNM (Do Not Modify)

• GE[3:0] = Greater Than or Equal To

• E = Endianism of Data

• A = Imprecise Abort Disable

• Interrupt Disable bits
I = 1, disables the IRQ
F = 1, disables the FIQ

• State bit
T = 0, 32-bit instruction set
T = 1, 16-bit instruction set

• Mode (defines processor mode)
M[4:0] = 10000 User mode
M[4:0] = 10001 FIQ mode
M[4:0] = 10010 IRQ mode
M[4:0] = 10011 Supervisor mode
M[4:0] = 10111 Abort mode
M[4:0] = 11011 Undefined mode
M[4:0] = 11111 System mode

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

N Z C V Q IT J DNM GE[3:0] IT[7:2] E A I F T MODE[4:0]

Supported data types

• The processor supports the following data types:
– Double Word (64 bit)
– Word (32 bit)
– Half Word (16 bit)
– Byte (8 bit)

• Although the processor supports unaligned accesses, TI does not recommend
using unaligned accesses for bus performance.
– Above data types should be aligned at their respective size boundary.
– Most unaligned accesses are converted into multiple aligned accesses.

• The TMS570 devices are storing their data in big endian format (BE32), and
RM4/5x stores data in little endian format.

Exception handling and the vector table

• Reset Highest Priority

• DABT

• FIQ

• IRQ

• UNDEF

• PABT

• SVC Lowest Priority

• The FIQ is implemented as a non-maskable interrupt in the Hercules MCU.
• nFIQ and nIRQ inputs are connected to VIM.

Exception handling
When an exception occurs, the CPU does the following:

• Copies CPSR into SPSR_<mode>
• Sets appropriate CPSR bits

• Change to ARM state
• Change to exception mode
• When an IRQ interrupt is received, the CPU disables other IRQ interrupts
• When an FIQ interrupt is received, the CPU disables both IRQ and FIQ interrupts

• Stores the return address in LR_<mode>
• Sets PC to vector address or ISR address
• Swaps banked registers

To return, the exception handler needs to:

• Restore CPSR from SPSR_<mode>
• Restore PC from LR_<mode>

Interrupt handling
The Hercules MCU supports three different modes to handle peripheral interrupts in hardware
and software:

• Index interrupts mode (legacy mode): The interrupt dispatching has to be done completely in

software (software dispatcher).

• Register-vectored interrupt mode: This mode allows the interrupt dispatching to be done in
hardware, the software has only to load the interrupt vector of the ISR from the VIM module
and branch to the vector.

• Hardware-vectored interrupt mode (IRQ only): This mode has the advantage that the vector
of the ISR has not been loaded by software. Instead, the vector is directly supplied to the MCU
core via the VIC port, and saves some CPU cycles for lower interrupt latency compared to the
second mode.

Index interrupts mode

1. Events occur within peripherals

2. Peripherals make FIQ/IRQ requests
to the VIM

3. VIM prioritizes the requests &
provides the highest ISR to CPU

4. CPU fetch from 0x18/0x1C.

5. Branch to ISR dispatcher.
6. Load Interrupt offset .(IRQINDEX,

FIQINDEX)

7. Decide which ISR to execute.

8. Branch to ISR

VIM:
Prioritizing and

signaling IRQ/FIQ
to ARM Cortex-R4

Register-vectored interrupts

1. Events occur within peripherals

2. Peripherals make FIQ/IRQ requests
to the VIM

3. VIM prioritizes the requests &
provides the addr of the highest ISR
to CPU

4. CPU fetches from 0x18/0x1C

5. Branch to ISR (LDR PC, [PC, #-
0x1B0]), (IRQVECREG/FIQVECREG.)

6. Branch to ISR

VIM:
Prioritizing and signaling

IRQ/FIQ to ARM Cortex-R4

Hardware-vectored interrupts (only IRQ)

1. Events occur within
peripherals

2. Peripherals make FIQ/IRQ
requests to the VIM

3. VIM prioritizes the requests

4. VIM provides address of
highest pending request
directly to the processors VIC
port.

5. CPU branches directly to ISR.

VIM:
Prioritizing and signaling

IRQ/FIQ to
ARM Cortex-R4/5

Abort: Prefetch and Data
Prefetch Abort (PABT)

• CPU tries to execute an instruction from a protected or faulty memory location, such as:
– The memory location is not implemented in the system.
– The memory region is protected by the MPU.
– An error is detected in the data by the ECC checking logic.

• All prefetch aborts are precise.

Data Abort (DABT)

• The CPU takes the data abort if data is read from or written to a protected or faulty memory location.
This could be because of the following conditions:

– The memory location is not implemented.
– The memory location is read- or write-only in privileged mode (when processor is in User mode).
– The memory location is read- or write-protected by the MPU.
– If an error is detected in the data by the ECC checking logic.

• Data aborts can be precise or imprecise.

Abort type: Precise (synchronous), Imprecise (asynchronous)
Precise or Synchronous Aborts

• The abort is taken at the instruction that caused the exception.

• The abort handler could use the SPSR_abt and R14_abt (LR_abt) registers to determine the
instruction that generated the abort and the CPU state when the abort occurred.

• Prefetch abort is always a precise abort.

Imprecise or Asynchronous Aborts

• If the exception is taken on an instruction later than the instruction that caused the exception.

• It is not possible to determine the exact instruction that caused the abort.

• This could be the case on writes to normal-type memory, where the write is stored in a buffer until
the memory system is ready to perform it. In such cases, the exception will be generated and the
abort will be taken after the appropriate store instruction was executed by the processor.

How to determine the cause of an abort

• The Cortex-R4/5 processor has a system control coprocessor implemented: The
CP15. The CP15 offers the possibility to readout additional information about an
abort.

• Four registers in the CP15 hold information about the cause of an abort:
– Data Fault Status Register
– Auxiliary Fault Status Registers
– Data Fault Address Register
– Instruction Fault Address Register

• SafeTI Web Page: www.ti.com/safeti
• Hercules Web Page: www.ti.com/hercules

– Data sheets
– Technical Reference Manual
– Application notes
– Software & tools downloads and updates
– Order evaluation and development kits

• Hercules Safety Microcontrollers Training Series
training.ti.com/hercules

– Cortex-R Processor Architecture
– Peripherals
– Software
– Functional Safety

• For questions about this training, refer to the
Engineer-2-Engineer Support Forum www.ti.com/hercules-support

– News and announcements
– Ask technical questions
– Search for technical content

For more information

http://www.ti.com/safeti
http://www.ti.com/hercules
https://training.ti.com/hercules
http://www.ti.com/hercules-support

TI Information – Selective
Disclosure

	Hercules™ ARM® Cortex®-R4�System Architecture�
	Slide Number 2
	Slide Number 3
	Cortex-R: Ideal for safety-critical applications
	Cortex-R4 features
	Cortex-R4 Hercules Processor
	Pipeline
	Floating Point Unit (FPU)
	Processor modes
	Processor registers
	Current Processor Status Register (CPSR)
	Supported data types
	Exception handling and the vector table
	Exception handling
	Interrupt handling
	Index interrupts mode
	Register-vectored interrupts
	Hardware-vectored interrupts (only IRQ)
	Abort: Prefetch and Data
	Abort type: Precise (synchronous), Imprecise (asynchronous)
	How to determine the cause of an abort
	For more information
	Slide Number 23

