## I²C Interface Technical Deep Dive

March 2018

## TI Training - summary

## I2C Summary:

This training will focus on the I2C protocol and the challenges our customer designer's face when using this standard. Topics covered will include basic I2C protocol, challenges/tradeoffs of I2C, and how TI products help overcome these problems.

## What you'll learn:

- Learn I2C Protocol
- Understand I2C challenges
- Provide solutions to problems


## Detailed Agenda

- Overview of I2C
- Hardware
- Protocol
- Devices
- Translators
- Switches
- Buffers
- I/O Expanders


## ${ }^{1}{ }^{2} \mathrm{C}$ interface products



## I2C Overview

Hardware

## ${ }^{1 ²} \mathrm{C}$ History and Overview: <br> History and $I^{2} \mathrm{C}$ Devices



## ${ }^{12} \mathrm{C}$ History and Overview: <br> \section*{History and $I^{2} \mathrm{C}$ Devices}



## Features of $I^{2} \mathrm{C}$ Interface



## Features of I²C Interface

2 wire bus<br>-SDA (serial data line)<br>-SCL (serial clock line)



## Features of $\mathrm{I}^{2} \mathrm{C}$ Interface

## Open Drain or Collector Driver with Input Buffer that supports Bidirectional Data



## Features of ${ }^{2}$ C Interface

## Open Drain/Collector Driver with Input Buffer that supports Bidirectional Data



## Features of I²C Interface

## Open Drain/Collector Driver with Input Buffer that supports Bidirectional Data



## Features of I²C Interface

Open Drain/Collector Driver with Input Buffer that supports Bidirectional Data


## $I^{12} \mathrm{C}$ Interface: General Operations



## $I^{2} \mathrm{C}$ Physical Layer:Hardware



## $I^{2} \mathrm{C}$ Physical Layer:Hardware



## $I^{2} \mathrm{C}$ Physical Layer:Hardware



## Features of I²C Interface

## Addressing is accomplished with the SLAVE's hardware address.

Two Possible addressing modes:

- 7-bit address
- 10-bit address



## Features of $\mathrm{I}^{2} \mathrm{C}$ Interface

| Standard Mode | Fast Mode | Fast Mode Plus |
| :---: | :---: | :---: |
| 0 to 100 kHz | 0 to 400 kHz | 0 to $1,000 \mathrm{kHz}$ |
| $\mathrm{C}_{\text {BUS MAX }}=400 \mathrm{pF}$ | $\mathrm{C}_{\text {BUS MAX }}=400 \mathrm{pF}$ | C $_{\text {BUS MAX }}=550 \mathrm{pF}$ |
| $\mathrm{t}_{\text {RISE MAX }}=1,000 \mathrm{~ns}$ | $\mathrm{t}_{\text {RISE MAX }}=300 \mathrm{~ns}$ | $\mathrm{t}_{\text {RISE MAX }}=120 \mathrm{~ns}$ |

## Features of I²C Interface

The $I^{2} \mathrm{C}$ bus is a very popular and powerful bus used for communications between a master (or multiple masters) and a single or multiple slave devices (aka ICs)

## Ability to add more devices in parallel by just connecting to the bus. Ease of expansion.



## Features of I²C Interface

The $\mathrm{I}^{2} \mathrm{C}$ bus is a very popular and powerful bus used for communications between a master (or multiple masters) and a single or multiple slave devices (aka ICs)

## Ability to add more devices in parallel by just connecting to the bus. Ease of expansion.



## Features of I²C Interface

The $\mathrm{I}^{2} \mathrm{C}$ bus is a very popular and powerful bus used for communications between a master (or multiple masters) and a single or multiple slave devices (aka ICs)

## Ability to add more devices in parallel by just connecting to the bus. Ease of expansion.



## Features of I²C Interface

The $I^{2} \mathrm{C}$ bus is a very popular and powerful bus used for communications between a master (or multiple masters) and a single or multiple slave devices (aka ICs)

## Ability to add more devices in parallel by just connecting to the bus. Ease of expansion.



## Benefits and Limitations of $I^{2} \mathrm{C}$

## Pros

- Simple
- Low Cost
- Robust
- Standardized
- Wide assortment of peripherals
- No need for termination
- Easy Bus Expansion


## Cons

- Low speed
- Bus Capacitance Limited
- Limits Speed
- Limits distance
- Half Duplex Only
- No suited for ~long distances


## Benefits and Limitations of $I^{2} \mathrm{C}$

## Pros

- Simple
- Low Cost
- Robust
- Standardized
- Wide assortment of peripherals
- No need for termination
- Easy Bus Expansion


## Cons

- Low speed
- Bus Capacitance Limited
- Limits Speed
- Limits distance
- Half Duplex Only
- No suited for ~long distances


## I2C Overview

## Protocol

## $\mathrm{I}^{2} \mathrm{C}$ Interface: Bus Control: start and stop conditions



A high-to-low transition on the SDA line while the SCL is high defines a START condition. A low-to-high transition on the SDA line while the SCL is high defines a STOP condition.

## $I^{2} \mathrm{C}$ Interface: Signals (SDA and SCL)



## ${ }^{1}$ ²C Interface: Logic Levels and Timing <br> The I2C standard specifies that the $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ be $70 \%$ and $30 \%$ of VCC respectively.

 The Logic level

## ${ }^{12} \mathrm{C}$ Interface: Byte Format



## I²$^{2} \mathrm{C}$ Interface: Repeated StART Condition



## $I^{2} \mathrm{C}$ Interface: Data Validity and Byte Format



## I²C Interface: Acknowledge (ACK) - Not Acknowledge (NACK)



## There are several conditions that lead to the generation of a NACK:

1. The receiver is unable to receive or transmit because it is performing some real-time function and is not ready to start communication with the master.
2. During the transfer, the receiver gets data or commands that it does not understand.
3. During the transfer, the receiver cannot receive any more data bytes.
4. A master-receiver is done reading data and indicates this to the slave through a NACK.

## [²C Interface: clock Stretching



## ${ }^{\text {I }}$ ² Interface: Other I2C Based Protocols

- System Management Bus (SMBUS)
- Power Management Bus (PMBUS)
- Intelligent Platform Management Interface (IPMI)
- Display Data Channel (DDC)
- Advanced Telecom Computing Architecture (ATCA)


## $I^{2} \mathrm{C}$ Data : Writing to a Slave on the $\mathrm{I}^{2} \mathrm{C}$ Bus

Example of Writing a single byte to a Slave register:
$\square$ Master Controls SDA Line
$\square$ Slave Controls SDA Line


## ${ }^{2}$ ² Data : Reading from a Slave on the $I^{2} \mathrm{C}$ Bus

Example of Reading a single register byte from a Slave register:

$\square$ Slave Controls SDA Line


## I²C Physical Layer:Hardware



## I²C Physical Layer: Hardware (Low) <br> Lets look at the physics of the High and Low generation. The SCL and SDA line will be treated as same.

LOW: When Master Pulls SCL to ground for logic low.


## I²C Physical Layer: Hardware (НІІн) <br> Lets look at the physics of the High and Low generation. The SCL and SDA line will be treated as same.

 HIGH: When Master releases SCL from ground, $R_{\text {PULLUP }}$ raises bus to $V_{C C}$ for logic high.

## I²$^{2} \mathrm{C}$ Physical Layer: Bus Capacitance \& Rise Times



## Fast-Mode:

- $\mathrm{f}_{\text {scl(max) }}=400 \mathrm{kHz}$
- $t_{r(\text { max })}=300 \mathrm{~ns}$
- $\mathrm{C}_{\mathrm{b}(\text { max })}=400 \mathrm{pF}$
- $\mathrm{V}_{\mathrm{oL}(\text { max })}=0.4 \mathrm{~V}^{*}$
- $\mathrm{I}_{\mathrm{OL}(\text { min })}=3 \mathrm{~mA}^{*}$

[^0]
## Translators

## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

What happens when two devices need to operate at different $\mathrm{V}_{\mathrm{cc}}$ values?


## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## Pass Elements Based Devices



## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## PCA9306 - Pass FET Architecture



## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## PCA9306 - Pass FET Architecture



## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## PCA9306 - Pass FET Architecture



## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## PCA9306 - Pass FET Architecture



## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

PCA9306 - TI TINA equivalent circuit for resistance network


## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## PCA9306 - Pass FET Architecture



## Translation of $\mathrm{I}^{2} \mathrm{C}$ Bus

## PCA9306 - Pass FET Architecture



## Translation/Level Shifting of I²C Bus

## Design Considerations:

- Translators introduce propagation delays
- Delays become longer the further Vref1 and Vref2 are from each other
- Example: if Vref1 and Vref2 difference is 3V, propagation delays will be lower if Vref1 and Vref2 at 1V
- Placing Translators in series will further increase propagation delays and could cause timing issues
- Higher gate voltages will lower propagation delays
- Translators will not buffer capacitance on both sides of the translator.


## Translation/Level Shifting of I²C Bus

## PCA9306



Figure 6. Block Diagram of PCA9306

PCA9306

- Features
- Could be used as a switch via EN pin
- Small Package Available
- Pros:
- More configurable
- Cons:
- Wrong configuration can be damaged


## PCA9306-Q1



Figure 5. Architecture of a TCA9406 Cell
TCA9406

- Features:
- Internal 10k Pull ups
- Small Package Available
- Rise Time Accelerators support larger bus capacitance.
- Pros:
- Supports up to 1 MHz
- Can use larger pull ups to get lower $\mathrm{V}_{\mathrm{OL}}$
- Cons:
- RTA can cause glitches in some conditions
- $\mathrm{V}_{\text {CCA }}$ supports max of 3.6 V


## Translators

## Common questions

## I²C Devices: Translators

## Common Question:

- Difference between PCA9306/TCA9406 and <<insert buffer w/ translation here>>?
- PCA9306/TCA9406 do not provide active buffering because it is a pass FET architecture.
- Buffers typically have an offset on one side and PCA9306/TCA9406 pass VoL to the opposite side with little voltage increase due to voltage drop due to pass FET resistance and pull down current.


## I²C Devices: Translators

## Common Questions:

Difference between PCA9306/TCA9406 and <<insert buffer w/ translation here>>?

- Can I use PCA9306/TCA9406 to isolate an I2C line at the same voltage on both sides?

- Yes, but why would you want to do this?


## I²C Devices: Translators

## Common Questions:

Can I use PCA9306/TCA9406 to isolate an I2C line at the same voltage on both sides?


Why?

1. Could be used to disable communication with slaves who don't support 1 MHz

## I²C Devices: Translators

## Common Questions:

Can I use PCA9306/TCA9406 to isolate an I2C line at the same voltage on both sides?


Why?
2. One bus may plug into another: PCA9306 could be disabled during insertion and enabled when I2C line is idle to support "hot insertion"

## I²C Devices: Translators

## Common Questions:

Can I use PCA9306/TCA9406 to isolate an I2C line at the same voltage on both sides?

3. A switch to disable an I2C device which has address conflicts

## I²C Devices: Translators

## Common Question:

- Difference between PCA9306/TCA9406 and <<insert buffer w/ translation here>>?
- Can I use PCA9306/TCA9406 to isolate a I2C line at the same voltage on both sides?
- Does master need to be on side 1 of the device? (The datasheet pictures show master only on side 1)
- Both PCA9306 and TCA9406 are Bidirectional and do not know/care which side master is on


## Switches

## When to use... a switch

## Switch vs. multiplexer (Mux)



- Switch = 1 or many channels can be enabled at a time
- Mux = only 1 channel can be enabled at a time
- Switches can be used as muxes but muxes cannot be used as switches


## Slave address conflicts $\rightarrow$ Muxing/Switching is needed

- No address pin limits to 1 device per channel,
- Single ADDR pin limits to 2 devices per channel,
- Two address pins (A0, A1) limits to 4 devices per channel, etc.


## What makes an I2C switch special?

- Ideal speed (supports 400 kHz for I2C fast-mode clock speed)
- I2C-controlled (no need to waste GPIOs to control channel selection)


## I²C Devices: Switches: Introduction



## ${ }^{12} \mathrm{C}$ Devices: Muxes - Switches: Intoduction



## I²C Devices: Muxes - Switches: mroducton



## I²C Devices: Muxes - Switches: Intoduction



## I²C Devices: Muxes - Switches: Thoorvol opeation



## I²C Devices: Muxes - Switches: Thoorvol opeation



## Switches

Design Considerations

## Switches in Series

## $I^{2}$ C Devices: Muxes - Switches

## Design Considerations- Switches in series



## $I^{2}$ C Devices: Muxes - Switches

## Design Considerations- Switches in series



## I²C Devices: Muxes - Switches

## Design Considerations- Switches in series

Simplified circuit


## I²C Devices: Muxes - Switches

## Design Considerations- Switches in series



## ${ }^{\text {I²}}$ C Devices: Muxes - Switches

## Design Considerations- Switches in series

Lets Consider a more extreme example with 8 switches in series

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 4k ohms |
| Master's Ron | 110 ohms |
| Pull up voltages | 1.8 V |
| Rds of all channels | 20 ohms |



## I²C Devices: Muxes - Switches

## Design Considerations- Switches in series

Simulation results:


V seen by slaves must be <ViL to register as a valid low

## ${ }^{\text {I²}}$ C Devices: Muxes - Switches

## Design Considerations- Switches in series

Analyzing results:

| Device | Voltage (V) | ViL required (Vcc*30\%) | Is V<ViL? |
| :--- | :--- | :--- | :--- |
| Master | 0.328 | 0.540 | Yes |
| Slave 1 | 0.380 | 0.540 | Yes |
| Slave 2 | 0.425 | 0.540 | Yes |
| Slave 3 | 0.464 | 0.540 | Yes |
| Slave 4 | 0.495 | 0.540 | Yes |
| Slave 5 | 0.520 | 0.540 | Yes |
| Slave 6 | 0.540 | 0.540 | Yes/No |
| Slave 7 | 0.552 | 0.540 | No |
| Slave 8 | 0.558 | 0.540 | No |

## Switches

Design Considerations

## Switches in Parallel

## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

- What happens when all channels enabled?



## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

What happens when all channels enabled then:

- master pulls low?
- slave pulls low?



## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

- What happens when all channels enabled?



## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Simulation

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 2 k ohms |
| Master's Ron | 110 ohms |
| Pull up voltages | 1.8 V |
| Rds of all channels | 20 ohms |

Problem:
VoL(master)>ViL(master)


## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Simulation

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 2 k ohms |
| Master's Ron | 110 ohms |
| Pull up voltages | 1.8 V |
| Rds of all channels | 20 ohms |

Problem:
VoL(master)>ViL(master)
V (slave) $>\mathrm{ViL}$ (slave)


## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

What happens when all channels enabled then:

- master pulls low?
- slave pulls low?



## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Simulation

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 1 k ohms |
| Slave's Ron | 10 ohms |
| Pull up voltages | 5 V |
| Rds of all channels | 10 ohms |

ViL<=1.5V to be valid
$\mathrm{VoL}($ master $)=0.724 \mathrm{~V}$


## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Simulation

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 1 k ohms |
| Slave's Ron | 10 ohms |
| Pull up voltages | 5 V |
| Rds of all channels | 10 ohms |

ViL<=1.5V to be valid
VoL(master) $=0.724 \mathrm{~V}$
Vmax(slave) $=0.767 \mathrm{~V}$


## ${ }^{\text {I²}}$ C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Simulation

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 1 k ohms |
| Slave's Ron | 10 ohms |
| Pull up voltages | 5 V |
| Rds of all channels | 10 ohms |

ViL<=1.5V to be valid
$\mathrm{VoL}($ master $)=0.724 \mathrm{~V}$
$\mathrm{Vmax}($ slave $)=0.767 \mathrm{~V}$
$\mathrm{V}($ slave 1$)=0.385 \mathrm{~V}$


## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Simulation

| Assumptions for this example: |  |
| :--- | :--- |
| Pull up resistors | 1 k ohms |
| Slave's Ron | 10 ohms |
| Pull up voltages | 5 V |
| Rds of all channels | 10 ohms |

ViL<=1.5V to be valid
$\mathrm{VoL}($ master $)=0.724 \mathrm{~V}$
$\mathrm{Vmax}($ slave $)=0.767 \mathrm{~V}$
$\mathrm{V}($ slave 1$)=0.385 \mathrm{~V}$
What is the problem???


## I²C Devices: Muxes - Switches

## Design Considerations- Switches in Parallel

Recall:
V (slave1) $=0.385 \mathrm{~V}$
Ron(slave1) = 10 ohms $\mathrm{loL}=38.5 \mathrm{~mA}$

## Concern:



- Can Slave's pull down FET handle this much current? - Let's assume yes......this is typically a lot and usually cannot

- Can our switch handle this?
- Remember: all this current flows through ONE pass FET

|  |  | MIN | MAX | UNIT |
| :--- | :--- | ---: | ---: | :---: |
| $V_{\text {CC }}$ | Supply voltage range | -0.5 | 7 | V |
| $\mathrm{~V}_{1}$ | Input voltage range ${ }^{(2)}$ | -0.5 | 7 | V |
| $I_{1}$ | Input current |  | $\pm 20$ | mA |
| $\mathrm{I}_{0}$ | Output current | $\pm 25$ | mA |  |

## Switches

## Common Questions

## Switches: <br> Common Questions

## What voltage rail do I tie VCC pin to?



## Switches:

## Common Question: What voltage rail do I tie VCC pin to?

Step 1: Look to see what the lowest pull up voltage is


## Switches: <br> Common Question: What voltage rail do I tie VCC pin to?



Step 2: Vpass = lowest pull up voltage so use this to find what the MAX Vcc value can be


- In this example it appears Vcc can be 3V or lower
- But is that the case?

Figure 14. Pass-Gate Voltage ( $\mathrm{V}_{\text {pass }}$ ) vs Supply Voltage
( $\mathrm{V}_{\mathrm{cc}}$ ) at Three Temperature Points

## Switches:

## Common Question: What voltage rail do I tie VCC pin to?



Step 3: If the pulling voltage on the primary lines is the lowest. $\qquad$
Check if Vpullup_mainbus>=Vcc(max)*0.7
In this case $\operatorname{Vcc}(\max )$ can only be about 2.57 V

- If we chose 3V like in step 2 then our device would never see ViH and would likely treat the I2C bus as low
- Step 3 is necessary to ensure our device can communicate to the I2C bus

- Can I turn on all channels simultaneously?
- Need to double check if capacitance on bus does not violate I2C standards
- Ensure address conflicts do not occur if channels are all enabled
- Be sure the VoL of master and slaves are at acceptable ViL
- Calculate the current through the master/pass FET channel and ALL slave pull-up resistors when the master/slave drives low. It may be very high.


## Pull-up resistor calculation for switches

| Channel selected | Equivalent pullup |
| :--- | :---: |
| resistance |  |




Parameter / Feature


## Special function



Parameter / Feature

| Function |  |  | Key board | Key board |
| :--- | :--- | :--- | :--- | :--- |
| Number of channels |  | 7 | 18 | 24 |
| Minimum supply voltage | (V) | 1.65 | 1.65 | 1.65 |
| Maximum supply voltage | (V) | 3.6 | 3.6 | 3.6 |
| CRESET Pin |  |  | $\bullet$ |  |
| Interrupt Output |  |  | $\bullet$ | 0 |
| Internal pull-up resistor | $(\mathrm{k} \Omega)$ |  |  | 100 |
| I2C-bus | $(\mathrm{kHz})$ | 400 | 400 | 1000 |



## Switch with Too Many Slaves

Repeaters may need to be added to the output channels of the Switch to improve signal integrity of the $I^{2} \mathrm{C}$ signal If all channels are turned on at the same time then adding a buffer may be useful


## Buffers

## I²C Devices: Buffers: Introduction



Why do we need buffers?

| Frequency | Maximum Bus Capacitance allowed |
| :--- | :--- |
| 100 kHz | 400 pF |
| 400 kHz | 400 pF |
| 1 MHz | 550 pF |

## ${ }^{I^{2} C}$ Devices: Buffers:

## Introduction

## Example



## $I^{2} \mathrm{C}$ Devices: Buffers: Theory foperation

There's a problem with this circuit, do you see it?


## 12C DEVICES: Buffers: Theory of Operation

Here is simplified version the buffer and we will consider only one bus because the are identical. Lets start with the system in the IDLE state and then have the Master pull low, what happens?


THE BUS
LOCKS UP!!!

controlling the LOW?

## 12C DEVICAS: Buffers: Theory of Operation

We need a method to determine which side of the buffer is generating the low so that the buffer does not get locked up. Enter, the Static Voltage Offset.


## Buffers

## Design Considerations

## I²C Devices: Buffers:

## Design considerations

Understanding how TCA9517 works now tells us:

- NOT to connect static voltage offset (SVO) sides to each other (B side to B side)



## I²C Devices: Buffers:

## Design considerations

Understanding how TCA9517 works now tells us:
Connecting B side to A side is OKAY


Connecting A side to $B$ side is OKAY


Connecting A side to A side is OKAY


## I²C Devices: Buffers:

## Design considerations

What's wrong with this picture?


Most cases this is okay, but sometimes an old design is modified where the master and slave switch places

## I²C Devices: Buffers:

## Design Considerations

Are there other buffer devices on the bus?

- Sides with static voltage offsets should not be connected to each other

Are there devices with low ViL?

- The Vos of buffers can sometimes be larger than ViL

Can you stack buffers in series?

- Yes but there are concerns with this

What are the considerations for using buffers in parallel?

- Offset sides should still not be connected


## 12C Devices: Buffers: ti Solutions

| TCA9509 | PCA9515B | TCA9517 | TCA9517A | TCA9617B | TCA9617A | TCA4311A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCA9800 |  | TCA9801 | TCA9802 | TCA |  | TCA9509 |

## I/O Expanders

## I²C Devices: I/O Expanders: ntrowuction



## I²C Devices: I/O Expanders: ntrowuction



## I²C Devices: I/O Expanders: ntroucucion



## Other FAQs on IO expanders

## Do the address pins have to pulled HIGH or LOW using a resistor?

- It is not a requirement to use a resistor for pulling HIGH or LOW. However, a resistor can be used.


## Does TI offer IO expander with stuck bus recovery?

- We do not have an IO expander with stuck bus recovery feature today. The master need to issue as Reset command or power cycle


## What is the maximum frequency that the P-port toggle at?

- To write to a port you need to send 3 bytes plus the 3 ACK's and the Start and Stop. So the maximum switching frequency of the $P$ ports can be $\sim 15 \mathrm{kHz}$

What is the maximum current you can sink through an 8-bit IO expander

- The recommended current through each port is 10 mA , and the maximum through the IO Expander is 80 mA


## IO expanders



## Thank you!

## Common questions (\#1) <br> Which IO expander do I need? <br> 

Do you need lower power consumption and have mostly output needs?
Do you need a different I2C slave
address?
Do you need a hardware /RESET
pin $\longrightarrow$



[^0]:    Fast-Mode Plus:

    - $f_{\text {SCL(max) }}=1,000 \mathrm{kHz}$
    - $\mathrm{t}_{\mathrm{r}(\text { max })}=120 \mathrm{~ns}$
    - $\mathrm{C}_{\mathrm{b}(\text { max })}=550 \mathrm{pF}$
    - $\mathrm{V}_{\mathrm{OL}(\text { max })}=0.4 \mathrm{~V}^{*}$
    - $\mathrm{I}_{\mathrm{OL}(\text { min })}=20 \mathrm{~mA}$

