High Where power supply design meets collaboration

Resolving high-voltage gate driver challenges in wide V_{IN}/V_{OUT} converters

By: Ritesh Oza

What will I get out of this session?

- Purpose:
- ✓ Review full-bridge and buck-boost topologies (telecom/RRU/others)
- ✓ Understand gate driver challenges in these topologies
- Discuss possible solutions to these gate driver challenges
- Systems that have wide input wide output requirement will face the same challenges

- Part numbers mentioned:
 - UCC21225, UCC27710/2
 - UCD3138, LM5161
- Reference designs mentioned:
 - PMP20587
- Relevant end equipment:
 - Telecom power supplies
 - Automotive power supplies
 - Merchant supplies

Challenges in designing advanced power supplies?

- Robustness
- Efficiency
- Density
- Wide input/output range
- Cost sensitivity

Full-bridge – popular topology used in RRU power supplies

Challenges/observations with full-bridge full-bridge topology

- Multiple primary and secondary side bias exist
- Secondary side control
- 100V half-bridge drivers for primary side
- >100V half-bridge driver for secondary side
- Isolated gate driver can replace isolator and primary side half-bridge driver

Challenges/observations with full-bridge full-bridge topology

- Need two dual channel isolated driver
- If controller is on primary side, then use two isolated gate drivers on secondary side and 100V half-bridge driver on primary side
- Good switching characteristics, robustness, and size of the gate driver is important

Buck-boost popular topology used in RRU power supplies

 $V_{o} = -V_{in} \times (D / 1-D)$

Where –

- V_o = output voltage
- V_{in} = input voltage
- $D = duty ratio (T_{on}/T)$
- No galvanic isolation
- Multiple phases required to match power rating of full-bridge

Challenges/observations with synchronous buck-boost

- Separate controller ground and driver ground
- Level shift between controller output and driver input is required
- Requires at least two bias supplies
- Isolated gate driver can be used
 - Better CMTI & noise immunity
 - Large package size
 - Cost

Challenges/observations with synchronous buck-boost

- For higher power multi-phase buck-boost is generaly used
- Phases are generally interleaved for output ripple rejection
- Isolated driver and low-side driver can be used in multi-phase buck-boost if input to the lowside driver is isolated through normal signal isolator

What are key gate driver considerations?

- Voltage rating
- Number of channels
- Drive strength or rise/fall time
- Propagation delay
- Delay matching
- Robust (negative voltage handling)
- Package size
- Cost

Gate driver considerations – UCC21225 characteristics

Excellent switching characteristics (fast rise/fall times, low propagation delay, and low delay mismatch) of gate driver IC is a must requirement to achieve high efficiency

Gate driver considerations – UCC21225 characteristics

Another approach with synchronous buck-boost

- Separate controller ground and driver ground
- Level shift between controller output and driver input is a must
- Requires at least two bias supplies
- Half-bridge driver can be used
 - Good negative voltage handling
 - Smaller package size
 - Cost effective
 - Discrete level-shifter considerations

Discrete level shifter at the input Of HB driver

Ch1=HO Ch2=LO Ch3=HI LS input Ch4=LI LS input DR_{Prop. Delay}=23ns

- Additional prop. delay due to LS=4ns
- Additional delay mismatch due to LS=1ns

Level shifter implementation challenges/considerations

Digital controller output

➤ 3.3V or less voltage

 ✓ Low voltage makes it difficult to generate output voltage higher than gate driver input high threshold without increasing the level shifter load resistor (R_L) or without increasing the current

10mA or less current

 ✓ Low digital controller output current forces the design toward high level shifter input resistor, which in turn causes larger propagation delay through level shifter and large rise/fall time

Level shifter implementation challenges/considerations

Discrete transistors

Power dissipation

 ✓ Better timing characteristic requires higher current through the transistor. This high current in combination with high bus voltage causes high power dissipation on the transistor.

Parameter variations

 ✓ Variations in capacitance and other transistor characteristics might introduce larger prop delay and delay mismatch

Possible solutions to level shifter challenges

Better level shifter

Level shifter can be redesigned for better performance, but the component count will increase and therefore also the cost and area required on the board

Bigger/better transistor

High bandwidth transistor can possibly improve the performance, but it will cost more

Reduce emitter current

Increasing RE and RC will reduce the current further and that will reduce the power dissipation, but the propagation delay might increase

Level shifter performance with half-bridge driver

Note: disregard second scope measurement (i.e. 72ns). This is due to triggering error of the scope. Actual measurement is close to the first one (33ns, 37ns).

Modified level shifter at the input of HB driver

Resistor added to share the transistor power dissipation
Resistor values increased to reduce current & dissipation

 R_{B} =511Ω, R_{L} =650Ω, R_{C} =3.3kΩ,

 $\rm I_B$ < 3.3mA (compared to 10mA with original design) Total prop. delay increases to ~50ns

 Q_{P_Diss} =~175mW

Modified level shifter performance with half-bridge driver

Summary

- Full-bridge topology with full-bridge synchronous rectifier and negative input synchronous buck-boost converters are commonly used power supply topologies in remote radio units (RRU)
- Half-bridge gate drivers rated at >100V, with good drive strength, small in size, and good negative voltage handling capability can be used in both full-bridge and synchronous buck-boost topologies
- External level shifter need to be used in conjunction with half-bridge drivers in these topologies but adds propagation delay, delay matching, and components
- Good isolated gate driver (size, performance, cost) can be the optimum solution in these applications

Thank you

Ritesh Oza

Systems Engineer

r-oza@ti.com

© Copyright 2018 Texas Instruments Incorporated. All rights reserved.