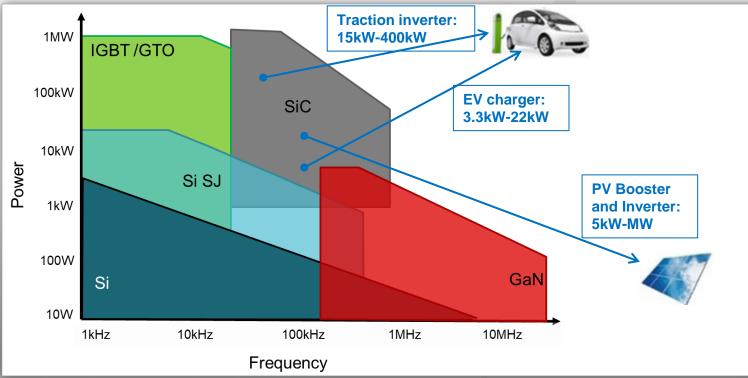
High Where power supply design meets collaboration

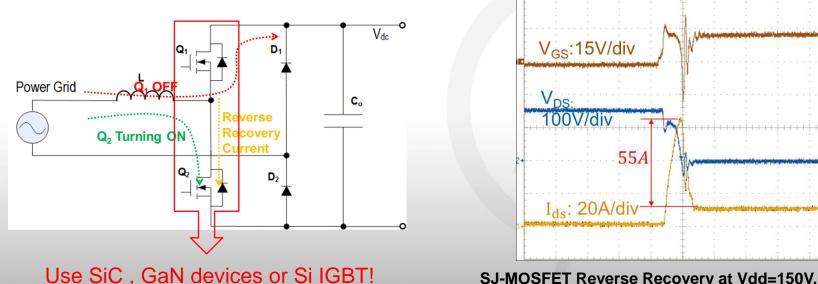
How to protect SiC MOSFETs... the best way!

Gangyao Wang


What will I get out of this session?

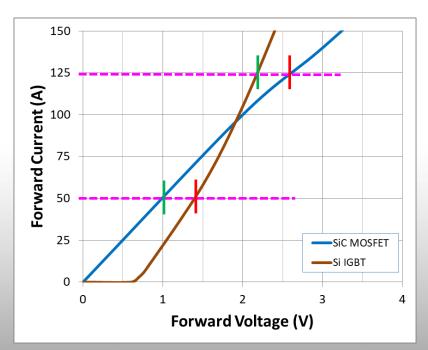
- What are SiC MOSFET advantages compared with Si MOSFET and IGBT
- Different short circuit current sensing and protection methods
- How to safely turn off MOSFET under short circuit

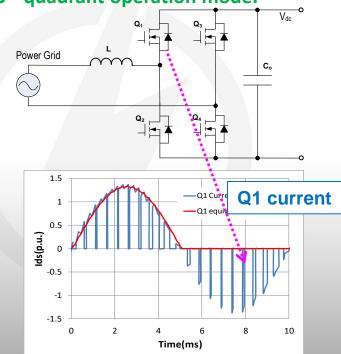
- Relevant part numbers:
 - UCC2152x
 - ISO585X
- Relevant reference designs:
 - TIDA-01604&5
 - ISO5852SDWEVM-017
 - TIDA-00917
- Relevant applications:
 - Solar Inverter, HEV/EV Traction Inverter, EV On-Board Charger, Charging Pile


SiC MOSFET Application Positioning

SiC MOSFET Advantages over Si MOSFET

Lower specific Rds(on) especially for >650V devices; 2) Low body diode reverse recovery. 1)



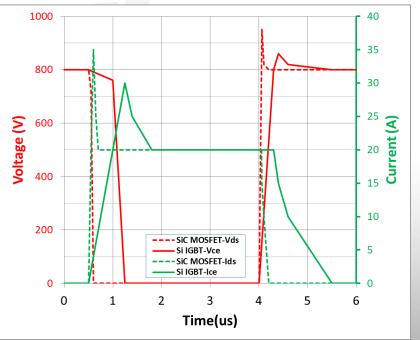

SJ-MOSFET Reverse Recovery at Vdd=150V, Idd=10A

SiC MOSFET Advantages over Si IGBT: Conduction

1) No 0.5-1.0V knee voltage; 2) Has "body diode"; 3) 3rd quadrant operation mode.

SiC MOSFET Advantages over Si IGBT: Switching

Low switching loss:

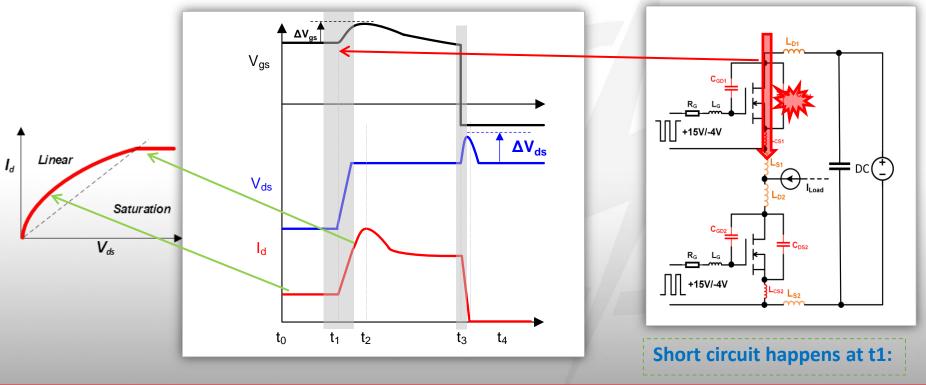

MOSFET (unipolar) vs IGBT (bipolar)- fundamental difference;

Given Switch loss less increase at elevated temperatures:

For 1000V SiC MOSFET, Esw@25°C = Esw@150°C

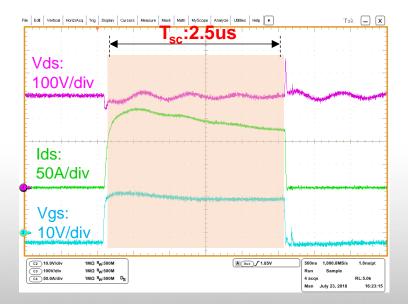
Low reverse recovery for the body diode:

Silicon PiN diode has significant reverse recovery which has reverse recovery loss and also adds more turn on loss.



Typical switching waveforms

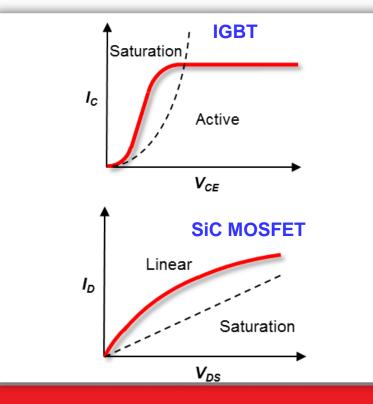
6


Overcurrent/Short Circuit Fault

7

Overcurrent/Short Circuit Fault Mechanism: Thermal limitation

 The short circuit withstand time t_{sc} is determined by the critical energy

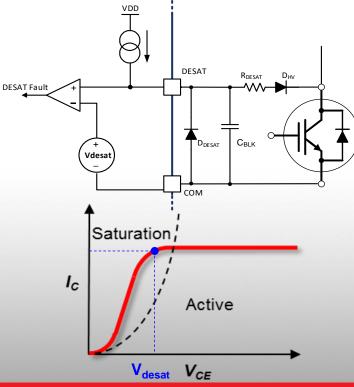

> minimal dissipated energy leading to device failure for one short circuit pulse

$$E_c = \int_{t_1}^{t_3} V_{ds} \cdot I_d \cdot dt$$

- Vds is the DC link volatge, Id will be the device saturation current.
- SiC MOSFET short circuit withstand time is shorter than IGBT due to smaller chip size, less thermal capacity.

Overcurrent/Short Circuit Fault Mechanism: Thermal limitation

- IGBT self-limits the current increase with lower saturation current
 - shape transient from saturation region to active region, collector current is limited to a constant value in active region
- SiC MOSFET has large linear region with high saturation current
 - In the case of SiC, I_d continues to increase with increase in V_{ds}, eventually resulting in faster breakdown
- For same rated current & voltage, IGBT reaches active region for significantly lower VCE as compared to SiC MOSFET


Question: From thermal limitation point of view, what is the typical SiC MOSFET short circuit withstand time (for example 1200V MOSFET in TO247 package used for 800V dc bus)?

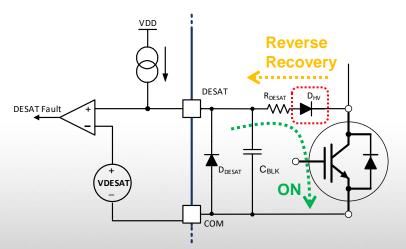
- A) <1us
- B) 1-3us
- C) 3-10us
- D) >10us

Answer: B) 1-3us (under typical Vds and recommended Vgs conditions)

Overcurrent/Short Circuit Protection Method: DESAT

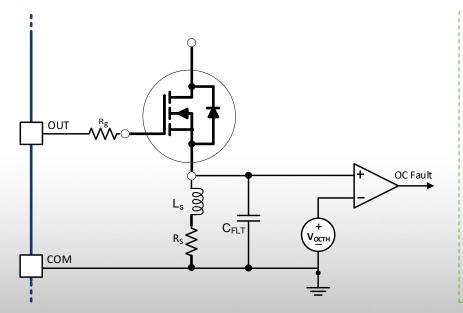
- Desaturation circuit detects the V_{ds} of MOSFET or V_{ce} of IGBT, protection is triggered when detected voltage is above pre-set reference voltage
- Blanking time is needed to prevent false trigger during switching turn on transients

$$t_{DS_BLK} = \frac{V_{DESAT} \times C_{BLK}}{I_{CHG}}$$


 Real detection voltage on the device terminals is lower than pre-set reference voltage

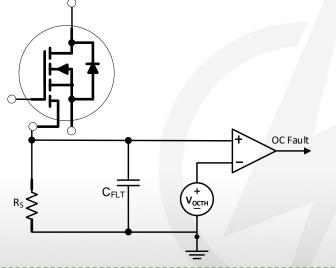
$$V_{DS_DET} = V_{desat} - V_{D_{HV}} - I_{desat} \times R_{desat}$$

DESAT threshold voltage varies between different devices due to the output characteristics, especially IGBT and SiC MOSFET


Overcurrent/Short Circuit Protection Method: DESAT

- Advantages
 - Simple circuits
 - Iow loss
 - Programmable protection time
- Challenges of DESAT protection method
 - High voltage fast reverse recovery diodes add cost
 - Multiple high voltage diodes are needed to share blocking voltage for above 1200V applications
 - Blanking time makes the protection time too long for SiC MOSFET
 - Parallel diode D_{desat} is needed to prevent the negative voltage on DESAT pin
 - Indirect current sensing can be challenging for SiC MOSFET

Overcurrent/Short Circuit Protection Method: Shunt Resistor


Advantages

- Accurate for both AC and DC
- Fast protection speed
- Low cost

Challenges of shunt resistor

- High power loss in high power applications
- Weak noise immunity due to gate loop noise caused by parasitic inductance of shunt resistor and PCB trace

Overcurrent/Short Circuit Protection Method: SenseFET / Current Mirror

- SenseFET / Current mirror is used to scale down main current, tens of mV voltage is measured on sense resistor
- Accuracy is determined by current scaling circuit and sensing resistor
- More commonly used in automotive applications

Overcurrent/Short Circuit Protection Method: SenseFET / Current Mirror

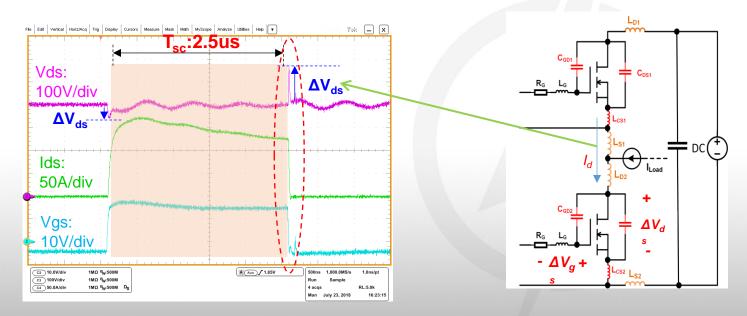
Advantages

- Fastest protection speed
- Accurate for both AC and DC

Challenges of SenseFET / Current mirror

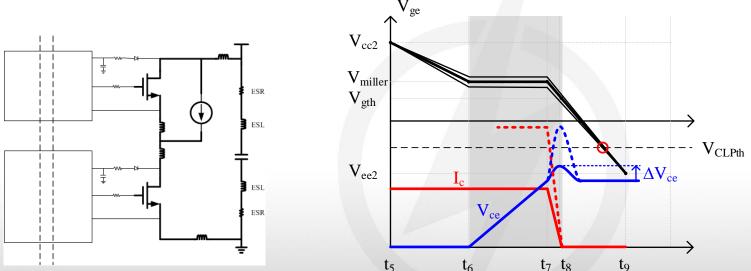
- Module needs to be customized to integrate SenseFET / Current mirror
- Higher cost

Overcurrent/Short Circuit Protection Method: Comparison


Method	DESAT	Shunt Resistor	SenseFET / Current Mirror
Response time	Slow	Fast	Fast
Accuracy	Good for IGBT; Medium for SiC MOSFET	High, depends on shunt quality 3% without calibration, 1% with calibration	Medium, depends on scaling accuracy and external resistor selection
Losses	Negligible	High and depends on Rs value	Low
Cost	Medium	Low	High

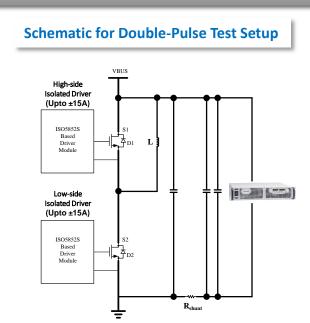
Shunt Resistor method is not desired for high power applications due to high loss;

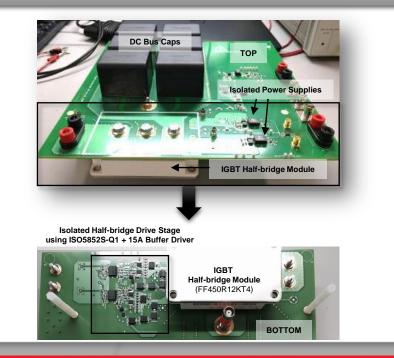
- SenseFET/Current Mirror works best for SiC MOSFET for its low noise and fast speed, but senseFET is not always available;
- Desat method works good for IGBT, but may have limitations for SiC MOSFET, especially for the drivers designed fro IGBT.


Overcurrent/Short Circuit Safe Turn-off: Avalanche limitation

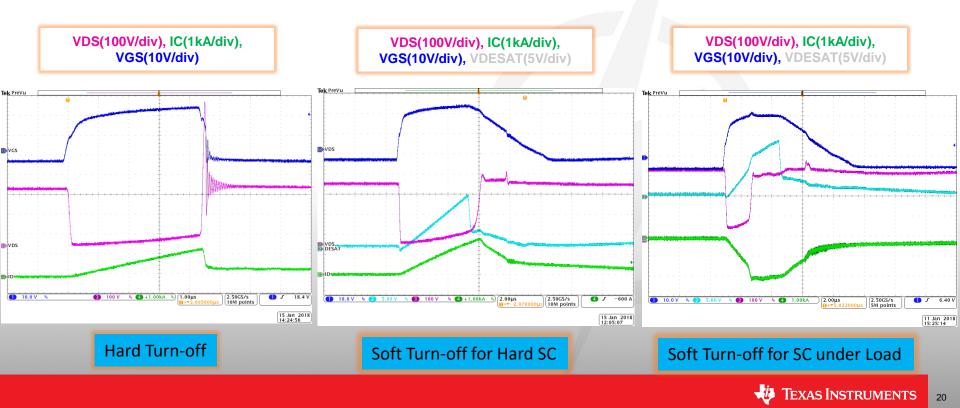
Voltage and avalanche limit: Device avalanche can be caused by the overshoot voltage on V_{ds}

SiC MOSFET Protection: Soft Turn-Off (STO) & 2L Turn-Off




- There are parasitic inductances in the power loop.
- Parasitic inductances together with di/dt cause voltage spikes.
- The di/dt rate is much higher under short circuit fault that a preventive turn-off measure needs to be taken in order to limit the loop inductance induced voltage spike.
- Effectively, there are two ways to slow down the turn-off process: <u>reduce di</u> or <u>extend dt</u>.

Short-Circuit Protection: Hardware Validation


Evaluation Hardware

Short Circuit Protection for SiC MOSFETs: with or without Soft turn-off

Summary and key takeaways

□ SiC MOSFET has superior performance than Si IGBTs for both conduction and switching;

□ There are mainly three methods for the fault current sensing and then protection, sense FET is good for SiC MOSFETs but cost is high;

De-sat method used for Si IGBT needs to be re-designed for SiC MOSFETs;

□ Soft/two level turn off is also desired for turning off SiC MOSFET under short circuit.

