Where power supply design meets collaboration
Maximizing efficiency of your LLC power stage: design, magnetics and component selection

Ramkumar S

High V()LT Interactive

What will I get out of this session?

- In this session we will look at the design considerations for developing high efficiency LLC converters
- Reference design examples based on TI's LLC and SR controllers
- Part numbers mentioned:
- UCC25630x
- UCC24612
- UCC24624
- Reference designs mentioned:
- TIDA-01494 (Industrial AC/DC)
- TIDA-01501 (PC PSU AC/DC)
- TIDA-010015 (Industrial AC/DC, TV PSU)
- TIDA-01495 (PC PSU AC/DC)
- TIDA-01557 (PC PSU AC/DC)

High V()LT Interactive

Next gen gaming PC adaptor

Server PSU

>98\% efficiency from PFC stage

80 Plus test type ${ }^{[4]}$	115V internal non-redundant				230 V internal redundant				230 V EU internal non-redundant			
Percentage of rated load	10\%	20\%	50\%	100\%	10\%	20\%	50\%	100\%	10\%	20\%	50\%	100\%
80 Plus		80\%	80\%	80\%						82\%	85\%	82\%
80 Plus Bronze		82\%	85\%	82\%		81\%	85\%	81\%		85\%	88\%	85\%
80 Plus Silver		85\%	88\%	85\%		85\%	89\%	85\%		87\%	90\%	87\%
80 Plus Gold		87\%	90\%	87\%		88\%	92\%	88\%		90\%	92\%	89\%
80 Plus Platinum		90\%	92\%	89\%		90\%	94\%	91\%		92\%	94\%	90\%
80 Plus Titanium	90\%	92\%	94\%	90\%	90\%	94\%	96\%	91\%	90\%	94\%	96\%	94\%

Overall peak efficiency $>96 \%$
Apart from using bridgeless PFC need $>97.5 \%$ peak efficiency DC/DC stage

High V()LT Interactive

Switching losses

In hard-switched converters

- Current \& voltage overlap @ turn-on \& turn-off
- Results in significant switching losses
- Limits switching frequencies, power density
- Increased EMI issues

High V(δ)LT Interactive

Why soft switching?

- As the demand for higher power density in power supplies increases:
- Need to increase switching frequency
- Hence need to reduce losses associated with switching
- An example: using a state of the art SJ MOSFET in a 400W power supply IPB60R180C7

- For a hard switched half bridge converter operating @ 200KHz
- Pon losses $2 \times 2.1 \mathrm{~W}=4.2 \mathrm{~W}$
- A soft switched converter will have $>1 \%$ efficiency improvement in this example.
- And the EMI signature?

Data taken comparing CCM PFC with SiC diode

High V()LT Interactive

If I use GaN , do I need to worry about switching loss?

- Let's look at a popular GaN in the market

- Compared to the latest generation SJ MOSFET, under hard switching:
- GaN has lower turn-off losses
- Turn-on losses are almost similar
- Higher dv/dt also results in more EMI concerns.

Soft switched topologies are even more important for exploiting GaN

High V(\langle)LT Interactive

Resonant converters

- The switch network on the primary applies a square wave to the resonant tank
- The resonant tank's fundamental frequency is close the frequency of the square wave
- The rectifier on the secondary side applies a rectified and filtered sinusoidal current to the load

High V(\langle)LT Interactive

LLC resonant converter

Advantages of LLC converters

- The low magnetizing inductance enables ZVS even at no load (higher magnetizing current)
- LLC converters can regulate output voltage even under no load conditions
- Can be designed to operate in a narrow frequency range over a wide output load range

The $L r, L m \& C r$ form the resonant tank
Using integrated magnetics, it's possible to implement Lr (leakage inducatnce) \& Lm (magnetizing inductance) using the same transformer core

HighV()LT Interactive

The gain curve

At resonance Fr

- Lowest RMS currents
- Unity gain point
- ZVS for HV MOSFET \& ZCS for SR MOSFET

High V()LT Interactive

The gain curve

Below Fr Inductive region

- Higher RMS currents
- Can get high gain
- ZVS for HV MOSFET \& ZCS for SR MOSFET

High V()LT Interactive

The gain curve

FR1

Above Fr inductive region

- Frequency Increases to operate at light load
- ZVS for HV MOSFET
- High di/dt on SR MOSFET at turn-off results in Q_{rr} losses

High V() LT Interactive

Design procedure

- As an example we look at a 500W HB-LLC design
- The key design input parameters are given below

Parameter	Value
Output voltage \& current	$24 \mathrm{~V}, 21 \mathrm{~A}$
Nominal input voltage	390 V
Minimum input voltage*	310 V
Full load efficiency @ nominal input	96.5%

- The minimum input voltage is EE dependent
- In industrial, server PSU, it could be based on holdup time
- In TV power supplies, it might need to operate even from 90VDC (standby load conditions)

High V(δ)LT Interactive

Dimensioning the Resonant Tank

Resonant tank components are very critical for high efficiency:

- High L_{m} reduces circulating current, hence reduces

High V(γ LT Interactive

Effect of magnetizing inductance on dead time

- Magnetizing inductance $\left(L_{m}\right)$ determines the dead time $\left(T_{d}\right)$ required to achieve ZVS
- As L_{m} increases the T_{d} increases
- As L_{m} increases, primary RMS currents (1_{mss}) decrease up to a

Parameter	Symbol	Values			Unit
		Min.	Typ.	Max.	
Input capacitance	$C_{\text {iss }}$	-	1330	-	pF
Output capacitance	$C_{\text {oss }}$	-	24	-	pF
Effective output capacitance, energy related $^{2)}$	$C_{o(e r)}$	-	44	-	pF
Effective output capacitance, time $^{\left.\text {related }^{3}\right)}$	$C_{o(t)}$	-	453	-	pF

MOSFET with $R_{\text {dson }}=\sim 150 \mathrm{~m} \Omega$ certain point

$$
L_{m} \leq\left(\frac{T d}{F r * 16 * \operatorname{Coss}_{e q}}\right)=274 u H
$$

Fr	100 kHz
T_{d}	200 nS

A similar converter designed with LMG3410 $70 \mathrm{~m} \Omega$ Rdson results in Max $\mathrm{L}_{\mathrm{m}}=398 \mu \mathrm{H}, \sim 60 \%$ reduction in conduction losses

High V()LT Interactive

- LLC tank max gain: Mmax

Tank gain at $V_{\text {innom }}, M n o m=0.95$

$$
M_{\max }=\operatorname{Mnom} *\left(\frac{\text { Vin }_{\text {nom }}}{\text { Vin }_{\min }}\right)=\frac{390}{310}=1.19
$$

- High value of L_{n} results in lower losses
- Find required Q to get peak gain 110% of $\operatorname{Mmax}=1.31$
- Calculate the value of the $C_{r}, L_{r} \& L_{m}$ from this
- $C_{r}=\frac{1}{2 \pi * F r * Q * R a c} \cong 94 n F$

- $L_{r}=\frac{1}{(2 \pi * F r)^{2} * C r}=27 \mu \mathrm{H}$

$$
\text { Choosing } L_{n}=9, Q=0.275
$$

- $L_{m}=L n * L r=243 \mu H$

High V() LT Interactive

Component selection \& losses: HV MOSFET

Conduction loss

Resonant inductor current has 2 components:

- Load current carried by the HV MOSFET Ipri $i_{\text {ref }}$
- Resonant tank magnetizing current $I_{l m}$

$$
\begin{aligned}
& \text { Ipri }_{r e f}=\frac{\pi}{2 \sqrt{2}}\left(\frac{I_{\text {out }}}{N}\right)=3.04 \mathrm{~A} \\
& I_{l m}=\left(\frac{N * \text { Vout }}{4 * F s w * L m}\right)=2.013 \mathrm{~A} \\
& I_{l r}=\sqrt{I p r i_{r e f}^{2}+I l m^{2}}=3.64 \mathrm{~A}
\end{aligned}
$$

High V(\langle)LT Interactive

Component selection \& losses: HV MOSFET

Switching loss: turn-off
At full load, converter operates mostly closer to Fr

$$
\begin{gathered}
I H V_{\text {toff }}=I l m=1.89 \mathrm{~A} \\
t_{\text {off }}=t_{2}+t_{3} \\
t_{o f f}=(Q g d / V d s) * \text { Rgate } *\left(\frac{V_{d s}-V p l}{V_{p l}}\right) \\
+ \text { Ciss } * \text { Rgate } * \operatorname{Ln} *\left(\frac{V_{l l}}{V_{t h}}\right) \\
t_{\text {off }}=14.1 n S
\end{gathered}
$$

$$
E_{o f f}=0.5 * V d s * I H V_{\text {toff }} * \operatorname{toff}=5.35 \mu \mathrm{~J}
$$

$$
P S w_{H V}=F s w * E o f f=0.535 \mathrm{~W}
$$

+ Turn-OFF

PD60R145CFD7

Symbol	Parameter	Value
$C_{i s s}$	Input capacitance	1060 pf
$C_{r s s}$	Reverse transfer capacitance	$2.2 p \mathrm{~F}$
$R_{g a t e}$	Gate resistance	5Ω
$Q_{g d}$	Miller charge	$12 n \mathrm{~F}$
$V_{p l}$	Miller plateau voltage	5.5 V
$V_{t h}$	Threshold voltage	3 V

High V() LT Interactive

Component selection \& losses: SR MOSFET

Using CSD19501KCS, UCC24612

$$
I S R_{r m s}=\text { Iout } * \frac{\pi}{4}=16.4 \mathrm{~A}
$$

$$
\text { Pcond }_{S R}=I S R V_{r m s}^{2} * R d s_{o n}=1.4 \mathrm{~W}
$$

$$
\begin{aligned}
\text { Pdiode }_{S R} & =F s w * I S R_{\text {turnoff }} * V f * \text { Tdiode } \\
& =0.18 \mathrm{~W} \\
P S R V_{s w} & =F s w * Q g * V \text { drive }=34 \mathrm{~mW} \\
& P S R_{\text {tot }}=1.63 \mathrm{~W}
\end{aligned}
$$

Reduces losses by 3W on each leg compared with Schottky diode based rectifier

High V()LT Interactive

Magnetics design : transformer

Integrated magnetics:

Use single magnetic structure to implement resonant inductor and transformer

Discrete magnetics:
Use two separate magnetic
structure

- Occupies less space
- Requires special (split) bobbin, but cheaper if manufacturing quantity is high
- Less core losses, increases efficiency at light load
- Increased "AC resistance" due to proximity effect. Higher conduction loss.
- Slightly more expensive
- Occupies more space
- Huge reduction in "proximity" effect. Reduces "AC resistance" conduction loss significantly.
- For high output current applications, integrated magnetics reduce conduction losses
- More core choices for high performance applications

High V() LT Interactive

Magnetics design : transformer

 Calculating number of turns:Secondary turns: N_{s}
$N_{s}=\frac{V_{\text {out }}}{2 * \text { Fres } * \Delta B * A e}=3$ turns
Primary turns: N_{p}
$N_{p}=7.67 * N s=23$ turns
Use the operating points Fres \& ΔB to estimate the core loss before choosing

$$
\begin{gathered}
\text { Ptrans }_{F E}=\frac{120 \mathrm{KW}}{m^{3}} * V e=1.5 \mathrm{~W} \\
\text { Ptrans }_{F E}=1.5 \mathrm{~W}
\end{gathered}
$$

Symbol		Parameter	Value
Core geometry			PQ3230
A_{e}		Effective area	$162 \mathrm{~mm}^{2}$
A_{n}		Window area	$99 \mathrm{~mm}^{2}$
V_{e}		Effective volume	$12500 \mathrm{~mm}^{3}$
MLT		Mean length of turn	$66.7 \mathrm{~mm}^{2}$
Ferroxabe SfDT 2010 (
File Tools Help			
Inductance tactorcalcultion	Inductor design	Powerl loss calculution Help	
Trenstomer core selection	Megnetic regultor	Powe inductor properies	
Power loss density			

High V()LT Interactive

Magnetics design : transformer

- Take bobbin fill factor (K): 30\%
- Equal division for primary and secondary

Secondary Winding Loss:

$$
\begin{aligned}
& \text { Lwire }_{\text {sec }}=M L T * N s=200 \mathrm{~mm} \\
& \text { Awire }_{\text {sec }}=\frac{\frac{K}{2} * A n}{2 * N s}=2.22 \mathrm{~mm}^{2} \\
& \text { Rac }_{\text {sec }}=1.5 * R d c s e c={ }_{\mathrm{Cu}}=\frac{\text { Lwire }_{\text {sec }}}{\text { Awire }}=1.66 \mathrm{~m} \Omega \\
& \text { Ptranssec }_{c u}=2 * I L V_{r m s}^{2} * \text { Rdcs }_{\text {ec }}=1342 \mathrm{~mW}
\end{aligned}
$$

Symbol	Parameter	Value
A_{n}	Window area	$99 \mathrm{~mm}^{2}$
$M L T$	Mean length of turn	66.7 mm
N_{p}		23
N_{s}		3

Primary Winding Loss:

$$
\begin{aligned}
& \text { Lwire }_{\text {pri }}=M L T * N p=1518 \mathrm{~mm} \\
& \text { Awire }_{\text {sec }}=\frac{\frac{K}{2} * A n}{N_{p}}=0.65 \mathrm{~mm}^{2} \\
& \text { Rac }_{\text {pri }}=1.5 * R_{d c p r i}=\rho_{c U} * \frac{\text { Lwire }_{p r i}}{\text { Awire }_{p r i}}=43.76 \mathrm{~m} \Omega \\
& \text { Ptranspri }_{c u}=I l r_{r m s}^{2} * R d c p_{r i}=680 \mathrm{~mW}
\end{aligned}
$$

$$
\text { Ptrans }_{c u}=2.02 \mathrm{~W}
$$

High V()LT Interactive

Magnetics design : resonant inductor
$I l r_{p k}=1.414 * I l r=4.55 \mathrm{~A}$
$L_{r}=17 \mu H$
With $B_{p k}=0.16$ at $I l r_{p k}$
Calculate resonant inductor turns:
$N_{r}=\frac{L_{r} * I l r_{p k}}{B_{p k} * A e}=12.2$ turns

Core losses:

Following the same procedure as the transformer Estimate core loss from Ferroxcube tool
Pres $_{F E}=250\left(\frac{K W}{m^{3}}\right) * V e=0.71 \mathrm{~W}$

$$
\text { Total Pres }=1.014 \mathrm{~W}
$$

Conduction losses:

Assuming (K) 30% fill factor, AC resistance factor 2.7
Lwire $_{\text {sec }}=M L T * N r=528 \mathrm{~mm}$
Awire $_{\text {res }}=\frac{K * A n}{N_{r}}=0.9 \mathrm{~mm}^{2}$

Proximity effect
from 2 layer winding
$R d c_{\text {res }}=1.5 * \rho_{C U} * \frac{\text { Lwire }_{\text {sec }}}{\text { Awire }_{\text {sec }}}=16.7 \mathrm{~m} \Omega$
Pres $_{c u}=I l r^{2} * R d c_{r e s}=0.33 \mathrm{~W}$

High V()LT Interactive

Total losses

Component	Loss/ Pc (W)	Total loss(W)
HV MOSFET	1.759	3.568
SR MOSFET	1.63	3.26
LLC transformer		3.52
Resonant inductor		1.014
Total		11.36

Using SR driver which minimizes dead time increasing efficiency

- The estimated losses above do not include losses from resonant capacitor, output filter components or transformer termination losses

- Overall, the losses for this design will be up to 16W

High V($)$ LT Interactive

80 PLUS ${ }^{\circledR}$ platinum, 93% efficiency, super transient, 450W AC/DC - single-layer PCB TI Design: TIDA-01501

Leading transient performance (half duty-cycle response for line transient \& dynamic load) Meets 80 PLUS Platinum specs peak efficiency 92.4% @ $115 \mathrm{~V}_{\mathrm{AC}}$, 94.0% @ $230 \mathrm{~V}_{\mathrm{AC}}$
Single layer PCB design to achieve low solution cost
UCC28180, UCC256301, UCC24612
24V, 480W nominal 720W peak, >93.5\% efficient, robust AC/DC industrial power supply TI Design: TIDA-01494

- Meet 80 PLUS Platinum overall efficiency $>93.5 \%$ with peak efficiency $>94 \%$ at $230 V_{\text {AC }}$
- ZCS avoidance in the LLC stage, enabling wider input voltage range operation and robustness
- Peak output power of up to 720W for a short duration of 3 seconds
- UCC28180, UCC256301, UCC24612

93\% efficiency, 200W, fast transient, desktop PC PSU reference design TI Design: TIDA-01557

No load $<0.1 \mathrm{~W} ;>50 \%$ at $0.25 \mathrm{~W} ;>79 \%$ at $2 \mathrm{~W} ;>81 \%$ at 4 W
Meet 80 PLUS Platinum spec peak efficiency 93% @ $230 V_{\text {AC }}$
Output OCP, OVP, short-circuit protection, OTP with single layer PCB
UCC28056, UCC256301, UCC24612

High V($)$ LT Interactive

480W, thin profile (<17 mm), 94\% efficiency, fast transient response AC/DC TI Design: TIDA-01495

Thin profile $<17 \mathrm{~mm}$ with small PCB form factor of $185 \times 110 \mathrm{~mm}$
PFC phase shedding and advanced burst mode in the LLC enables high efficiency at light load conditions
Peak efficiency of 94.1% @ $230 \mathrm{~V}_{\mathrm{AC}}$, light load efficiency $>85 \%\left(230 \mathrm{~V}_{\mathrm{AC}}\right)$ at 5% load
UCC28063, UCC256303, UCC24612

94.5\% efficiency, 500W industrial AC/DC with < 250 mW standby

Peak efficiency 95% @ $\mathbf{2 3 0} \mathrm{V}_{\mathrm{AC}}$ and 93.5% @ $\mathbf{1 1 5} \mathrm{V}_{\mathrm{AC}}$
PFC phase shedding, burst mode in the PFC, LLC enables high efficiency at light load conditions
Peak efficiency 95% @ $230 V_{\text {AC }}$ and 93.5% @ $115 \mathrm{~V}_{\mathrm{AC}}$
UCC28064, UCC256303, UCC24612

High V(\langle)LT Interactive

Conclusions \& key takeaway

- Resonant converters are a preferred topology for high efficiency isolated DC/DC
- With GaN switches finding more of a commercial usage, soft switched topologies remain relevant
- We looked at ways to estimate losses in the major components of an LLC converter, which can be used to make optimized design choices
- Multiple TI Designs developed based on TI's latest generation LLC and SR controllers developed to act as a quick start reference for industrial/consumer ACDC applications

