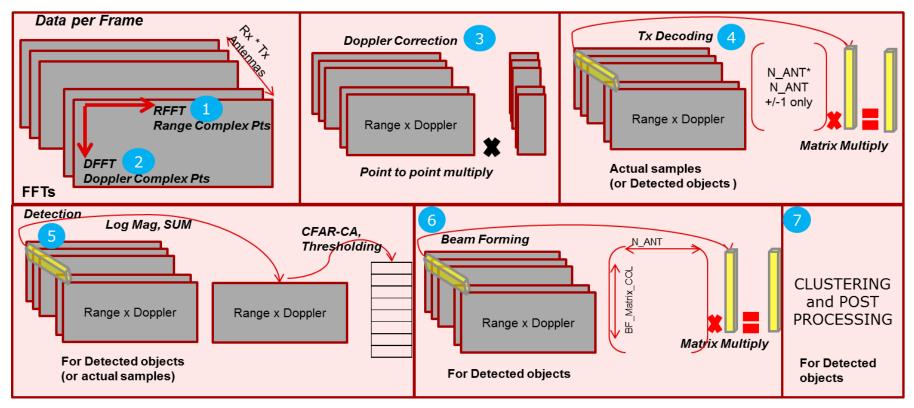
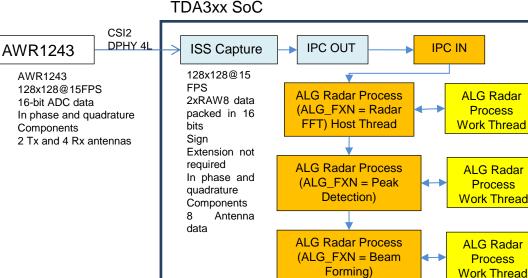
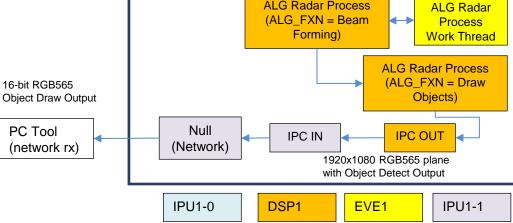
Introduction to **Processor SDK Radar – Part 2**

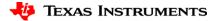


Agenda

- What is Processor SDK Radar?
 - Radar SDK Software Stack
- Processor SDK Radar Processing Chain
 - Algorithm Blocks (FFT, Peak Detection, Beam Forming)
 - Cascade Radar Data Processing Chain
- Getting Started with Processor SDK Radar




Radar Data Processing flow



Single Chip AWR1243 based Object Detection using Processor SDK – Radar on TDA3xx

- This usecase demonstrates the EVE object detection computation.
- The data flow shows a radar data capture for a configuration of 128 samples per chirp and 128 chirps per frame @ 15 FPS for 4 Rx Antenna and 2 Tx Antenna.

Radar Process Algorithm Link

Alg Plugin (Framework)

Library API

Alg Link								
FFT Algorith	Im Function	Peak Detect Alg Function	Beam Form Alg Function					
Range FFT	Doppler FFT	Peak Detector	Beam forming					

- A single radar algorithm link exposes the FFT, Peak Detection and Beam forming algorithm modules.
- This is achieved by the concept of "Algorithm Function".
- The Algorithm link takes care of buffer management for single input and single output queue.
- Processor SDK Radar Users can develop their own Radar Processing algorithms and use the algorithm plugin and algorithm function infrastructure to create their own Radar processing

PROCESSOR_SDK_RADAR_xx_xx_xx_vision_sdk\apps\src\rtos\radar\src\alg_plugins

Algorithm Modules (FFT)

Sub-function within API

		FFT		
Interference zero out	DC offset	windowing	FFT	Doppler correction

• Kernels

- FFT: 64, 128, 256, 512, 1024 point FFT kernels (16-bit fixed point with shift control at each stage, overflow detection)
- Interference zero out
- DC offset
- Windowing
- Doppler correction

• Applet

- XDAIS based interface
- Control to enable/disable interference zero out, DC offset, windowing and Doppler correction
- DMA based data flow using internal memories for data processing

Algorithm Modules (Peak Detector)

Sub-function within API

Peak Detector									
Tx decoding	Log magnitude & SUM	CFAR-CA detection							

- Kernels
 - Tx decoding
 - Log magnitude, sum
 - CFAR-CA detection

PROCESSOR_SDK_RADAR_xx_xx_xx_ti_components\alg orithms\eve_sw_xx_xx_xx\apps\peak_detection

Applet

- XDAIS based interface
- Control to enable/disable Tx decoding
- Control for energy computation for detection to be sum of log magnitude vs direct energy sum
- Control for cell sum direction (range vs doppler)
- DMA based data flow using internal memories for data processing

Algorithm Modules (Beam forming)

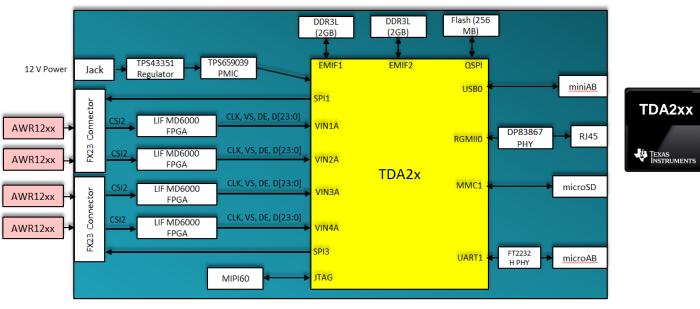
Sub-function within API

Beam forming									
Matrix multiply	Energy computation	Peak localization							

- Kernels
 - Matrix multiply
 - Energy computation
 - Peak Localization

PROCESSOR_SDK_RADAR_xx_xx_xx_ti_components\alg orithms\eve_sw_xx_xx_xx_apps\beam_forming

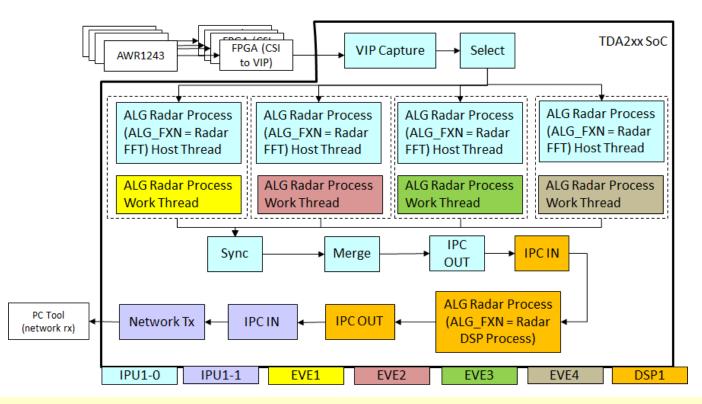
Applet


- XDAIS based interface
- DMA based data flow using internal memories for data processing

System architecture: Cascade FMCW radars

MIMO cascade with synchronous radars

2 PCB system, Up-to 192 radar virtual array combinations Radar front-end few inches from processors



AWR1243 mmWave Sensors Highly configurable frequency modulated continuous wave radio frequency transceivers with 76-81 GHz band which support up to 3 transmit (Tx) and 4 receive (Rx) chains

Highly optimized and scalable family of TI ADAS devices. Mix of TI's fixed and floating-point TMS320C66x digital signal processor (DSP), Vision/Vector AccelerationPac (EVE), ARM Cortex-A15 MPCore[™] and dual-Cortex-M4 processors.

4-Chip Cascade Radar Data Flow

PROCESSOR_SDK_RADAR_03_05_00_00\vision_sdk\docs\Radar\ProcessorSDKRadar_DataSheet.pdf

Radar System Planner

• Excel Based Utility to analyze the Radar processing requirements on TDA devices.

Configurations															
Range Dimension	1024	DDR BW = 95	OCMC BW = 0	DDF	BW = 0	OCMC BW = 0	c	DR BW = 0	OCMC BW = 0	DE	OR BW = 95	OCMC BW = 0		DDR BW = 95	OCMC BW = 0
Doppler Dimension (per Tx)	128	Interfe	rence Zero				1 F								
Rx	4				D	C Offset		Range	Window		Rai	nge_FFT		Doppl	er_Window
Tx	3		out				1			1					_
Frames/sec	15	EVE	0.00%	EVE		0.62%	E	VE	1.2	4% EV	/E	0.0	0%	EVE	11.69
Multiplexing across Tx	Yes														1
Detection Method	CFAR-CA		K									-			-
Detection/dwells	20	DDR BW = 0	OCMC BW = 0	DDF	BW = 95	OCMC BW = 0	E	DR BW = 0	OCMC BW = 0	DE	OR BW = 8	OCMC BW = 0		DDR BW = 9	OCMC BW = 0
Number of Angles (Angle resolution)	120		*				T T								
System Overhead	5%	Den	nlan FFT =		l-			Free	~		1.00.1	An amituda			
virtual Anteenas	12	Dop	pler_FFT =		Doppie	er Correction		Ener	gySum		LOG N	lagnitude		CFAR-C	A Detection
#Raw samples/dwell (cube size)	1572864														
Plane size (range * doppler)	131072	EVE	0.00%	EVE		11.30%	E	VE		0% EV	/E		0%	EVE	
#Object samples/dwell	240		<							_					-
BeamForming Matrix Column	120														
Sample size (in bytes)	4	DDR BW = 1	CMC BW = 0	DDF	BW = 1	OCMC BW = 0	-					_			
		A	. Fatimation		Deat	Duccessing		Color Legends	EVE	C66x	M4				
		Azimuti	n Estimation		Post	Processing	L	COIDI Legenus	LVL	COOX	1014				
		D/F	09/			08									
		EVE	0%	C66	ĸ	0%									
SOC Utilizati	on Summary		[ļ ļ											
Processing/Memory subsystem	Freq(MHz) #co	ores %Loading				SOC Ut	ilizatio	on Summa	ary						
EVE	500	1 25%	6	35%											
C66x	500	2 09	6	30%											
M4	212	1 309	4												
DDR3 BW	532	1 249		25%											
				20%			_								
DCMC BW	266	1 09	6							%Loading					
OCMC Memeory Size (KB)	0			15%						%Loading					
Serve Memeory Size (RD)	0														
				10%											
Cells to control - user input				5%											
Derived (computed) information				570											
				0%											
				1	* EVE	2 * C66x	1 * M4	1 * DDR3 BW	1 * OCMC BW						

Looking for Support?

- Use TI E2E forum to get additional support
- Kindly post queries/feedback on below forum
 - https://e2e.ti.com/support/arm/automotive_processors

Thank you

© Copyright 2018 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

