Current-Feedback Amplifiers – Part 3

TI Precision Labs – Op Amps

Prepared and Presented by Hasan Babiker

Voltage Feedback to Current Feedback Translation

Amplifier	β	1/β	A_{ol}/Z_{ol}	Loop Gain
Voltage Feedback	V_{FB}	$\frac{1}{V_{FB}} = NG$	$rac{V_o}{V_{FB}}$	V_{o}
Current Feedback	I_{FB}	$\frac{1}{I_{FB}} = R_F + (R_i * NG)$	$rac{V_{o}}{I_{FB}}$	V_{o}

Voltage Feedback

Current Feedback

THS3491 Model

Pin	Description			
INN	Inverting Input			
INP	Non-Inverting Input			
GND	Ground Connection			
VCC	Positive Power Supply			
VEE	Negative Power Supply			
PD_NOT	Power-down			
Out	Output			
FB	Output			

Check DC Operating Point

Click Analysis → DC Analysis → Calculate Nodal Voltages

Check DC Operating Point

Click Analysis → DC Analysis → Calculate Nodal Voltages

$$V_{os} * NG = V_{out}$$

$$V_{os} = \frac{8.3 \ mV}{5.028} \approx 1.65 mV$$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽¹⁾
I _B .	Inverting input bias current(3)		-20	-7	20	μΑ	А
V _{OS} Input offset voltage	lanut effect voltage	DDA package only	-2	1	2	mV	Α
	input onset voltage	RGT package only	-2.5	1	2.5	mV	A

Run an AC transfer characteristic analysis over the appropriate frequency range:

Click **Analysis** → **AC Analysis** → AC Transfer Characteristic

Click the "Post-Processor" button to add the desired curves

Use "Post-Processor" and input equations of desired curves

$$egin{aligned} Z_{ol} &= V_{out}/I_{FB} \ 1/eta &= 1/I_{FB} \ Z_{ol}eta &= V_{out} \end{aligned}$$

Confirm Zol and Beta1 curves meet parameters of the datasheet

Zol Check Beta1 Check

Remove undesired curves and format axis for easier viewing:

Use a cursor to determine the frequency where Aol β = 0dB, f_c , and place legend to show corresponding magnitudes and phases

Thank you for your time and please take the quiz

Problems Current-Feedback Amplifiers – Part 3

1

- 1. Simulate the Loop-Gain (Aolβ) Phase Margin for the circuit below with the following capacitive loads:
 - a.) 1pF
 - b.) 10pF
 - c.) 50pF

2. Simulate the Loop-Gain (Aolβ) Phase Margin for the circuit below.

Solutions

1. Simulate the Loop-Gain (Aolβ) Phase Margin for the circuit below with the following capacitive loads:

a.) 1pF 60.03° b.) 10pF 55.46° c.) 20pF 44.11°

Problem 1_Solution.TSC

2. Simulate the Loop-Gain (Aolβ) Phase Margin for the circuit below.

Phase Margin = -151.5°. Amplifier needs feedback resistor for proper unity gain configuration.

Problem2_Solution.TSC

