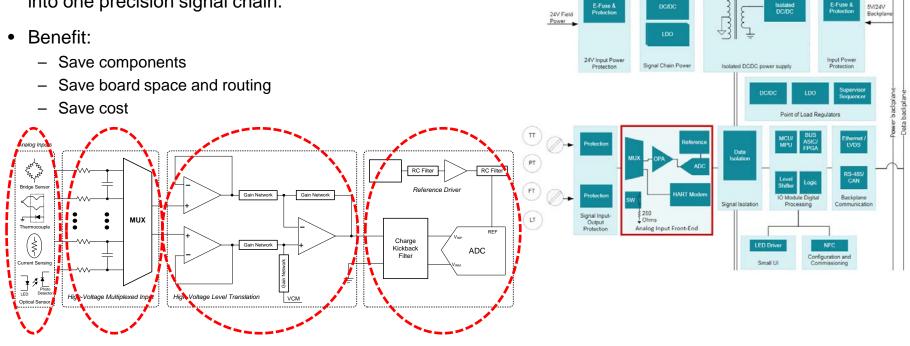


System Level Protection for High-voltage Multiplexers in Muti-channel Data Acquisition Systems

David Wang

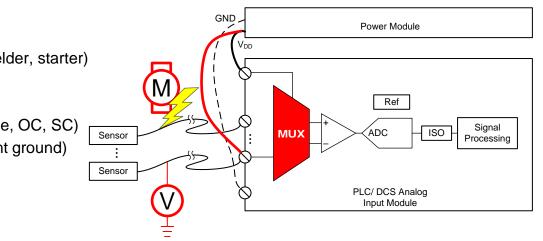
- Overview
 - What causes fault condition
 - How does fault condition impact the system
- Protection schemes using discrete components
 - Diodes in series with supplies
 - Series resistor + Zener diodes on supplies
 - Series resistor + Schottky + Zener diodes on supplies
 - Series resistor + TVS diodes
- Multiplexers with integrated protection
 - TMUX1072
 - MPC50x
- Comparison and conclusion


System Level Protection for High-Voltage Multiplexers in Multi-Channel Data Acquisition Systems

Overview

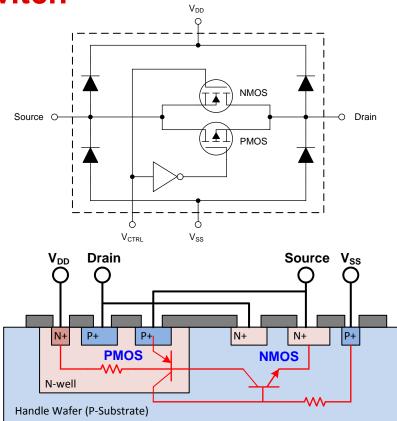
Multiplexers (MUX) in typical data acquisition system

A analog multiplexer is often used on the front end of a ٠ data acquisition system to multiplex multiple channels into one precision signal chain.

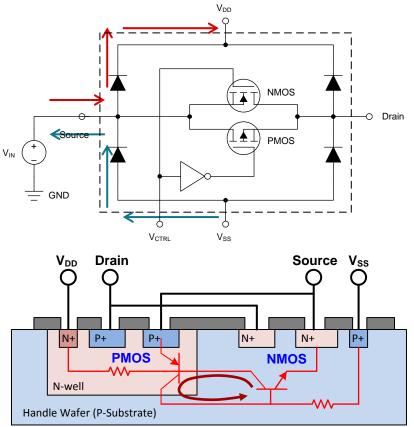


5V/24V

Sources of fault condition


- Fault condition definition:
 - A voltage applied to the input of a multiplexer exceeds the voltage at the <u>power supply</u> pins
- Overvoltage occurs because of :
 - 1. EMI/ transient disturbance
 - Switching power electric devices (welder, starter)
 - Rotating electrical devices
 - 2. Human error:
 - Mis-wiring (connection to high voltage, OC, SC)
 - Incorrect grounding (floating, different ground)
 - 3. Component failure/ Wire short
 - 4. Environmental disturbance
 - Lightning strike
 - ESD
 - Arching (relay/switches)

Basic construction of a CMOS switch


- A typical CMOS switch is constructed with N-channel MOSFET and P-channel MOSFET in parallel:
 - Logic high enables the NMOS and conducts negative signal.
 - Logic low enables the PMOS and conducts positive signal.
- A multiplexer is constructed with multiple switches in parallel with either the source or the drain pin connected.
- ESD protection diodes are typically implemented on the input and output to clamp to V_{DD} and V_{SS}.
 - V_{FORWARD} is typically 0.6~0.7V.
 - Can typically carry up to 30mA of current.
- Parasitic diodes/ BJTs are also presented in a typical CMOS switch construction.

How fault condition impacts the system operation

- If $V_{IN} > V_{DD} + 0.7V$ or $V_{IN} < V_{SS} 0.7V$:
- 1. High diode current destroys the ESD structure and causes device failure.
- 2. Supply rise to the overvoltage level and destroys other devices connected to the supply.
- 3. If the power supplies are floating, devices connected to the same supplies become powered by the input signal → unknown and uncontrolled operation.
- If the power supplies are grounded, the PMOS device will turn on and pass the input to the output → possibly damages downstream components
- Fault channel causes increased leakage current to other channels on the same device → Impact measurement accuracy
- 6. Current induced through the parasitic BJTs causes latchup → device failure

