EOS and ESD on ADC

Presented by Alex Smith

Prepared by Dale Li

ESD vs. EOS – What's the Difference?

ESD

- Electrostatic discharge
- Short duration event (1-100ns)
- High voltage (kV)
- Fast edges
- Both "in-circuit" and "out-of-circuit"

EOS

- Electrical overstress
- Longer duration event
 - Milliseconds or more
 - Can be continuous
- Lower voltage
 - May be just beyond absolute maximum ratings
- "In-circuit" event only

- 2

EOS from Fault or Overdriven

Fault Conditions

- ✓ Harsh electrical environment
- ✓ High voltage circuit in the system
- ✓ Improper power up sequencing
- ✓ Hot-swap connection and disconnection
- \checkmark Loss of power supply but input signal is applied
- ✓ Apply bipolar signal to unipolar input ADC
- ✓ Miswiring
- \checkmark Other conditions violating the absolute maximum specifications

Internal Clamp/Protection on Data Converters

1. Input Steering diodes:

2. Back-to-Back Zener diode:

3. SCR-Based input:

*Bi-directional SCR example

TEXAS INSTRUMENTS

SCR-Based ESD Structure and Latch-up

Cross section of typical SCR design structure

- SCR (silicon controlled rectifier) is a parasitic structure. Overshoot and undershoot outside the normal operating voltage and current levels can cause Latch-up and damage the device.
- Trigger Latch-up
 - ✓ Applied voltage > Vн and applied current > Iн
- Terminate Latch-up state:
 - ✓ A latch-up remains even after applied signal has been removed and requires a **power supply shut down** to remove the low impedance path.

Why use SCR-Based ESD protection

- Input Signal Voltage > Power Supply. •
- SCR is used as effective input ESD lacksquareprotection element to sustain a higher ESD level within a smaller layout area because:
 - Lower holding voltage
 - Significantly lower power dissipation
 - Robust ESD protection

Electrostatic Discharge Protection Circuit for High-Speed Mixed-Signal Circuits by Hossein Sarbishaei.

Input Diode to REF/AVDD

- Internal diodes are connected to REF: ADS8860, ADS9110, ADS8900B...
- Internal diodes are connected to AVDD: \bullet
- Absolute Maximum Input Range: lacksquare
 - Analog input voltage is limited to -0.3V to REF+0.3V (or AVDD+0.3V)
 - Input current is generally limited to -10mA to 10mA

ADS9224R, ADS8168...

Input ESD Diode turns on and Impacts Voltage Reference

- When input signal is overdriven, a disturbance is found on REF signal (or AVDD) which lacksquarecan degrade the performance if the REF (or AVDD) is shared.
- The higher overdriven signal, the worse disturbance impact. •

TEXAS INSTRUMENTS

Input Protection on ADC with AFE

- Typically 5V supply voltage and ±12V input range, so ESD diode to supply will not work
- Clamp is implemented with back-to-back Zener diodes or SCR input.
- ABS MAX Input voltage limit: $\pm 15V$ on ADS8588S, and $\pm 20V$ on ADS8681/8688
- ABS MAX Input current Max Limit = ± 10 mA

Thanks for your time! Please try the quiz.

Questions: EOS and ESD on ADC

- 1. For the circuit shown below, what kind of internal ESD structure is **NOT** practical?
 - a. Input ESD steering diodes
 - b. Back-to-back Zener diodes
 - c. SCR type ESD structure

Questions: EOS and ESD on ADC

- 2. (T/F) The internal ESD protection structures are designed primarily to protect the device during assembly and test (i.e. out of circuit events).
 - a. True
 - b. False
- 3. Which type of ESD structure will trigger on and remain on until power is cycled?
 - a. Input ESD steering diodes
 - b. Back-to-back Zener diodes
 - c. SCR type ESD structure

Questions: EOS and ESD on ADC

- 4. Which of the following does *NOT* apply to ESD?
 - a. High voltage (kV)
 - b. Fast edges
 - c. Long duration event of milliseconds or more.
 - d. Both "in-circuit" and "out-of-circuit"
- For the circuit below, what is the maximum input voltage?
 a. 5.0V

d. 12V

TEXAS INSTRUMENTS

Thanks for your time!

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

