# Linear OPAMP Characterization: Common Mode Rejection Ratio

Presented by: Joseph Serritella

Prepared by: Joseph Serritella, Daryl Hiser, Ray Ochotorena, Mark Irwin



### **OPAMP** verification

#### **OPAMP electrical characterization:**

- Characterizing the electrical behavior of an integrated circuit is critical during application troubleshooting
  - Non-conformances can be identified by comprehending device-level characteristics in addition to system performance
- OPAMP electrical characterization series will review the following topics:
  - Voltage offset (V<sub>OS</sub>)
  - V<sub>CM</sub> / Common Mode Rejection Ratio (CMRR)
  - Power Supply Rejection ratio (PSRR)
  - Output swing
  - Quiescent current
  - Open loop gain (A<sub>OL</sub>)



## **Prerequisites**

#### **Electrical characterization: CMRR**

- Common mode rejection ratio measurements methods are reviewed
- Following prerequisites are recommended prior to proceeding though the handbook

### **Prerequisites:**

#### **TI-Precision Labs (TIPL) courses:**

**CMRR: TIPL - Op Amps: Common Mode Rejection** 

ti.com/training-opamps-vos

#### **Pocket reference:**

Training: Analog Engineer's Pocket Reference

ti.com/analogrefguide

#### **Application handbook:**

A-B-A: Board Level Troubleshooting

ti.com/board-level-troubleshooting

#### **Simulation tools:**

Simulations are presented within the handbook. It is recommended to install TINA-TI

TINA-TI can be downloaded for free on ti.com: http://www.ti.com/tool/tina-ti



# **OPAMP** test loops

#### **Overview:**

- Analyzing datasheet parameters may appear a daunting task!
- Multiple parameters can be derived easily from offset (V<sub>OS</sub>).
  - PSRR, CMRR, and AOL can be calculated by monitoring shifts

#### False Summing Junction (FSJ):

- Accurate VOS measurements can be obtained through test loops
  - Benefits:

- Disadvantages:
- Simplistic

 Feedback resistor load in parallel with other added loads

StableSmall

- Loop drive function of DUT V<sub>OS</sub>
- Majority of DC parameters determined with 4 resistors!

#### **Measuring VOS:**

- VOS: differential input voltage required to force output to mid-supply
  - best measured at the summing junction (V<sub>SJ</sub>)
- Output control voltage (VOC): Calibrate the out voltage to zero volts
  - Know as offset correction factor (derived from Kirchhoff's Voltage Law):

$$V_{oc} = -(V_{out} + VOS(302)) + 2VCM$$



#### **Example:**

- V+ = +10V
- V- = -10V
- $V_{OUT} = 0V$
- $V_{OC} = 0V$  (ideal opamp)

#### **Results:**

- $V_{SJ} = 1.01 \text{mV}$
- 1.01mV = (101)Vos = V<sub>SJ</sub> 10µV = Vos

Resistor values can be varied depending on device



4

# Common mode rejection ratio - OPA192

#### **Measurement preparation:**

- **CMRR:** Change in  $V_{OS}$  divided by the  $V_{CM}$  change
- Review data sheet test conditions prior to evaluating **CMRR** 
  - V<sub>CM</sub> range of a complementary input AMP has three operation regions
    - pMos ,nMos ,and the transition region
  - Measuring CMRR in the transition region may impact the result



**Figure 4:** V<sub>CM</sub> versus V<sub>OS</sub> graph highlighting operating regions

### Common mode rejection ratio

#### **Bench setup and measurements:**

Shifting supplies & output is equivalent to moving V<sub>CM</sub>



### Offset voltage (1):

- **DUT**: OPA192IDGK
- V + = +30V
- V- = 0V
- $V_{OUT1} = 15V$
- $V_{CM1} = -15V$

### Offset voltage (2):

- **DUT**: OPA192IDGK
- V + = +3V
- V- = -27V
- $V_{OUT2} = -12V$
- V<sub>CM2</sub> = 12V