

Presented by: Joseph Serritella

Prepared by: Joseph Serritella, Daryl Hiser, Ray Ochotorena, Mark Irwin

OPAMP verification

OPAMP Electrical Characterization:

- Characterizing the electrical behavior of an integrated circuit is critical during application troubleshooting
 - Non-conformances can be identified by comprehending device level characteristics in addition to system performance
- OPAMP electrical characterization series will review following topics:
 - Voltage offset (V_{OS})
 - V_{CM} / Common mode rejection ratio (CMRR)
 - Power supply rejection ratio (PSRR)
 - Output swing
 - Quiescent current
 - Open loop gain (A_{OL})

Prerequisites

Electrical characterization: PSRR

- Power supply rejection ratio measurements methods are reviewed
- Following prerequisites are recommended prior to proceeding though the handbook

Prerequisites:

TI-Precision Labs (TIPL) courses:

PSRR: TIPL - Op Amps: Power Supply Rejection

ti.com/training-power-supply-rejection

Pocket Reference:

Training: Analog Engineer's Pocket Reference

ti.com/analogrefguide

Application handbook:

A-B-A: Board Level Troubleshooting

ti.com/board-level-troubleshooting

Simulation tools:

Simulations are presented within the handbook. It is recommended to install TINA-TI

TINA-TI can be downloaded for free on ti.com: http://www.ti.com/tool/tina-ti

OPAMP test loops

Overview:

- Analyzing datasheet parameters may appear a challenging task!
- Multiple parameters can be derived easily from offset (V_{OS}).
 - PSRR, CMRR, and AOL can be calculated by monitoring shifts

False Summing Junction (FSJ):

- Accurate VOS measurements can be obtained through test loops
 - Benefits:

- Disadvantages:
- Simplistic

 Feedback resistor load in parallel with other added loads

StableSmall

- Loop drive function of DUT V_{OS}
- Majority of DC parameters determined with 4 resistors!

Measuring VOS:

- VOS: differential input voltage required to force output to mid-supply
 - best measured at the summing junction (V_{SJ})
- Output control voltage (VOC): Calibrate the out voltage to zero volts
 - Know as offset correction factor (derived from Kirchhoff's Voltage Law):

$$V_{oc} = -(V_{out} + VOS(302)) + 2VCM$$

Example:

- V+ = +10V
- V- = -10V
- $V_{OUT} = 0V$
- $V_{OC} = 0V$ (ideal opamp)

Results:

- V_{SJ}= 1.01mV
- 1.01mV = (101)Vos = V_{SJ}

Resistor values can be varied depending on device

$$10\mu V = Vos$$

Power supply rejection ratio – OPA192

Bench setup and measurements:

- PSRR: Change in V_{OS} divided by the change in V_{Supply}
 - Consider the transition region for rail to rail amps
 - The nMos active region remains constant as supply delta varies
- Refer to data sheet for PSRR test conditions versus supply range

$$PSRR\left(\frac{V}{V}\right) = \left(\left|\frac{\Delta VOS}{\Delta V_{Supply}}\right|\right)$$

$$PSRR(dB) = -20 \times LOG\left(PSRR\left(\frac{V}{V}\right)\right)$$

Figure: representative V_{CM} versus V_{OS} graph. The red line represents the common voltage range of a decreased supply voltage

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
PSRR Power- ratio	supply rejection	T _A = -40°C to +125°C		±0.3	±1.0	μV/V

Power supply rejection ratio

Bench Setup and Measurements:

Offset Voltage (1):

- DUT: OPA192IDGK
- V + = +15V
- V- = -15V
- V_{OUT1} = 0V

Offset Voltage (2):

- DUT: OPA192IDGK
- V + = +6V
- V- = -6V
- V_{OUT2} = 0V