Valley Switching Boost Power Factor Correction (PFC) Reference Design

C2000 Systems Solution: Digital Power TIDM-1022: <u>http://www.ti.com/tool/TIDM-1022</u>

Detailed agenda

- Background:
 - Reference design feature
 - Valley switching application
 - Type-4 PWM-based valley switching control
- System configuration
 - Hardware modification
 - Peripheral usages
 - Control diagram
 - Software structure
- Technical challenges
- Waveforms and test results

Detailed agenda

- Background:
 - Reference design feature
 - Valley switching application
 - Type-4 PWM-based valley switching control
- System configuration
 - Hardware modification
 - Peripheral usages
 - Control diagram
 - Software structure
- Technical challenges
- Waveforms and test results

<u>TIDM-1022</u>:Valley switching boost PFC

Features

- · Interleaved, 750W, two-phase boost PFC stage
- Full range parameter: 95~260 Vrms, 47~63Hz, 750W
- 200kHz switching frequency under normal condition (load > 10%)
- 150~330kHz variable Pulse Width Modulation (PWM) switching under light load (<10%)
- Programmable output voltage, 380-V DC output nominal
- Low Total Harmonic Distortion (THD): Close to 5% at 5% load
- High efficiency > 92% at 5% load
- powerSUITE[™] support for easy adaptation of design for user requirement
- Software Frequency Response Analyzer (SFRA) for quick measurement of open loop gain
- Full digital control using TI's Piccolo F280049 controller
- Protects for output overcurrent and overvoltage conditions
- · Programmable valley switching and valley skipping

Applications

- · Onboard chargers for Electronic Vehicles (EVs)
- · Server and network power supplies
- · Telecom rectifiers
- Industrial power supplies

Tools & Resources

 Key TI devices: TMS320F280049, OPA365, SN74LVC1G3157, TPS795, UCC27524

Benefits

- · High efficiency and low THD enabled under light load condition.
- Using latest type-4 PWM offers flexibility to implement valley switching and valley skipping.
- High-performance C2000 controller enables superior control and enables advanced control scheme to be implemented.
- powerSUITE support enables easy adaptation of software.
- · CLA support enables better integration options.

2-phase Interleaved Power Factor Correction (ILPFC) converter:

- The function of a PFC stage is to convert the AC voltage to a regulated DC bus voltage while drawing a sine wave input current in-phase with the AC input voltage.
- This is implemented using a bridge rectifier followed by a boost PFC stage.

2-phase Interleaved Power Factor Correction (ILPFC) converter:

- The function of a PFC stage is to convert the AC voltage to a regulated DC bus voltage while drawing a sine wave input current in-phase with the AC input voltage.
- This is implemented using a bridge rectifier followed by a boost PFC stage.

2-phase Interleaved Power Factor Correction (ILPFC) converter:

- The function of a PFC stage is to convert the AC voltage to a regulated DC bus voltage while drawing a sine wave input current in-phase with the AC input voltage.
- This is implemented using a bridge rectifier followed by a boost PFC stage.

Valley switching

- Valley switching is a soft-switching technique, also called quasi-resonant switching.
- D1 reverse-biased, energy resonates between L1 and parasitic capacitor of Q1.
- Switch should be turned ON at the valley point of the voltage across it.

Valley switching

- Valley switching is a soft-switching technique, also called quasi-resonant switching.
- D1 reverse-biased, energy resonates between L1 and parasitic capacitor of Q1.
- Switch should be turned ON at the valley point of the voltage across it.

Valley-switching with Type-4 PWM allows the following:

- Capture of the oscillation frequency/period
- Accurate delay of the PWM switching instant
- Programmable number of edges before the delay takes effect

Detailed agenda

- Background:
 - Reference design feature
 - Valley switching application
 - Type-4 PWM-based valley switching control
- System configuration
 - Hardware modification
 - Peripheral usages
 - Control diagram
 - Software structure
- Technical challenges
- Waveforms and test results

System configuration

- Valley switching is based on a modified ILPFC board with an extra Vds sensing circuit
- Valley switching is enabled under light load condition with single phase.

System configuration

- Valley switching is based on a modified ILPFC board with an extra Vds sensing circuit
- Valley switching is enabled under light load condition with single phase.

System configuration

- Valley switching is based on a modified ILPFC board with an extra Vds sensing circuit
- Valley switching is enabled under light load condition with single phase.

Peripheral usages

CMPSS configuration

- CMPSS2H for current protection
- CMPSS5H for valley capture
- CMPSS5L ZVS or valley switching mode selection

Valley switching block in EPWM module

Valley switching software structure

Detailed agenda

- Background:
 - Reference design feature
 - Valley switching application
 - Type-4 PWM-based valley switching control
- System configuration
 - Hardware modification
 - Peripheral usages
 - Control diagram
 - Software structure
- Technical challenges
- Waveforms and test results

The Vds waveform is decided by several factors: instantaneous input voltage,

The Vds waveform is decided by several factors: instantaneous input voltage,

- ZVS Calculation-based control
- Details are available in the application note: <u>http://www.ti.com/lit/sprach7</u>

Difficult to reduce the current distortion:

- Target: Seamless transition between valley switching, ZVS, fixed frequency operating modes
- Methods: Clamp freq during valley switching, ZVS coefficients, blanking window, CMPSS threshold, hysterisis control, etc.

Difficult to reduce the current distortion:

- Target: Seamless transition between valley switching, ZVS, fixed frequency operating modes
- Methods: Clamp freq during valley switching, ZVS coefficients, blanking window, CMPSS threshold, hysterisis control, etc.

Input current distortion before implementing multi-mode control

Difficult to reduce the current distortion:

- Target: Seamless transition between valley switching, ZVS, fixed frequency operating modes
- Methods: Clamp freq during valley switching, ZVS coefficients, blanking window, CMPSS threshold, hysterisis control, etc.

Vds waveforms under multi-mode control

Blanking window

- Reasons for using blanking window:
 - Limit the max freq
 - Filter the noise
- Blanking window length = Duty cycle *period + Buffer size
- The high to low edge of blanking window itself will be counted as the first edge.

Hysteresis control

ZVS/valley switching transition

Detailed agenda

- Background:
 - Reference design feature
 - Valley switching application
 - Type-4 PWM-based valley switching control
- System configuration
 - Hardware modification
 - Peripheral usages
 - Control diagram
 - Software structure
- Technical challenges
- Waveforms and test results

- Current waveform improved with optimized valley switching control
- Low line test condition:
 5% load 120V input, 380V output

- Current waveform improved with optimized valley switching control
- Low line test condition:
 5% load 120V input, 380V output

- Current waveform improved with optimized valley switching control
- Low line test condition:
 5% load 120V input, 380V output

🜵 Texas Instruments

- Current waveform improved with optimized valley switching control
- Low line test condition:
 5% load 120V input, 380V output

With valley switching

Performance comparison

Constant freq control compared to multi-mode control

TIDM-1022 THD compared to spec

THD meets the requirement of the spec (Server customer)

For more information

- Download the valley switching Boost Power Factor Correction (PFC) reference design: <u>http://www.ti.com/tool/TIDM-1022</u>
- Learn more about the Piccolo 32-bit MCU (TMS320F280049): http://www.ti.com/product/TMS320F280049
- Control Law Accelerator (CLA) Usage in TIDM-1022: <u>http://training.ti.com/tidm1022-cla-usage</u>
- For questions about this training, refer to the E2E Community Forums for C2000 Processors at <u>http://e2e.ti.com</u>