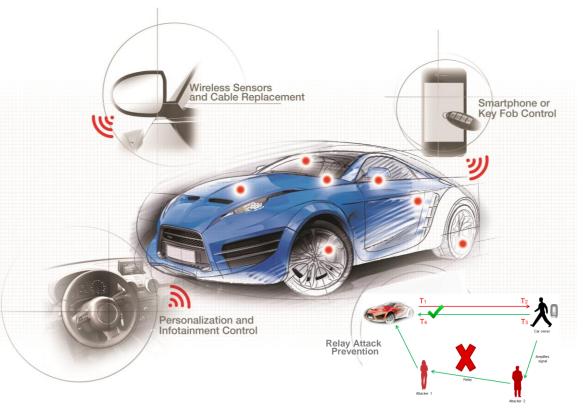

TI BLE for Automotive Car Access – Relay attack, PEPS, Phone as a Key

Gary Lin MGTS

Low Power RF WW BLE organization

San Diego Software R&D Support Dallas Management Systems/Marketing Support

Oslo HW R&D Validation and test Support


- >15 years connectivity experience
 Shipped more than 2Bu RF devices
 >5000 customers *
- Focus on Automotive and Industrial

Development activity

Regional support center

Why BLE for Automotive Applications?

- One system, multiple use cases
 - Phone as Key
 - PEPS, RKE
 - Relay Attack Prevention for PEPs
 - Cable Replacement
- Interoperability with smartphones and wearables (smart watch)
- Low power for long battery life and small size on car module
- Enables a cost effective solution for many emerging applications

Security Features for Bluetooth

- Strong encryption
 - Securely encrypting data transmitted between two devices is done by sharing a secret key of up to 128 bits using Advanced Encryption Standard (AES) in CCM mode.
- Secure key exchange:
 - In Bluetooth 4.2 Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol was introduced with the LE Secure Connections pairing feature. ECDH allows two new parties to establish a secret key known to them only without sharing it over the air
- BLE Advertisements Privacy
 - To avoid scanning devices from tracking an advertiser Bluetooth peripherals regularly change their BD address used. This address can be resolved with identity resolving key (IRK) shared via an encrypted connected
- More Information SimpleLink[™] BLE Security white paper: SWPB016

Why TI BLE for Automotive?

Portfolio

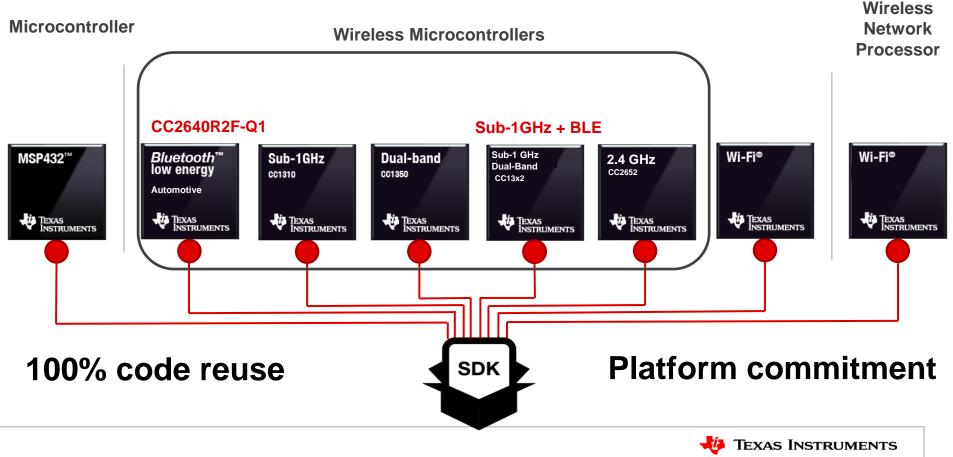
Innovation

Contraction of the second seco

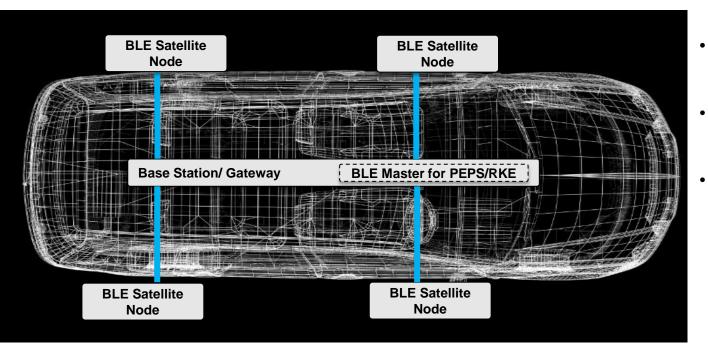
- Lowest power consumption
- BT5 ready long range
- Wettable flanks package
- Grade 2 temp (105C)
- 4. generation connectivity

- SW defined radio flexible future proof architecture
- First with BLE, First with BT5.0
- Real-time Locationing System (RTLS) platform
 - 1. RSSI w/ connection monitor
 - 2. Angle of Arrival (AoA)
 - 3. Time of Flight (ToF)
- Phone as a key (PaaK) using Angle of Arrival

Commitment

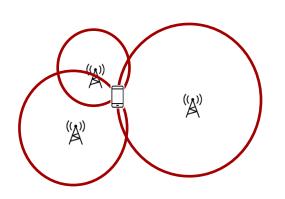


- 8 years BLE experience
- Most robust BLE SW
- Quality and reliability going beyond AEC-Q100
- Superior customer support


Long Term Investment in SimpleLink wireless platform for Automotive

SimpleLink[™] MCU platform Industrial/Automotive

System Overview of **BLE in Automotive**

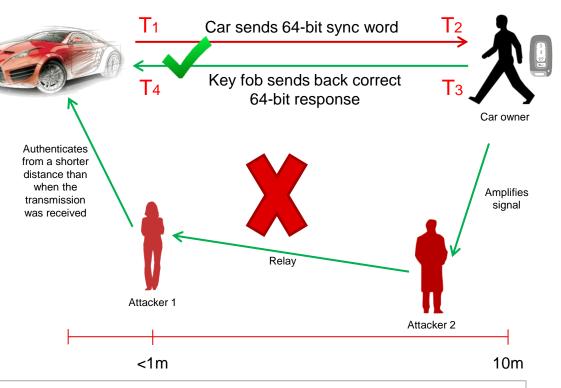


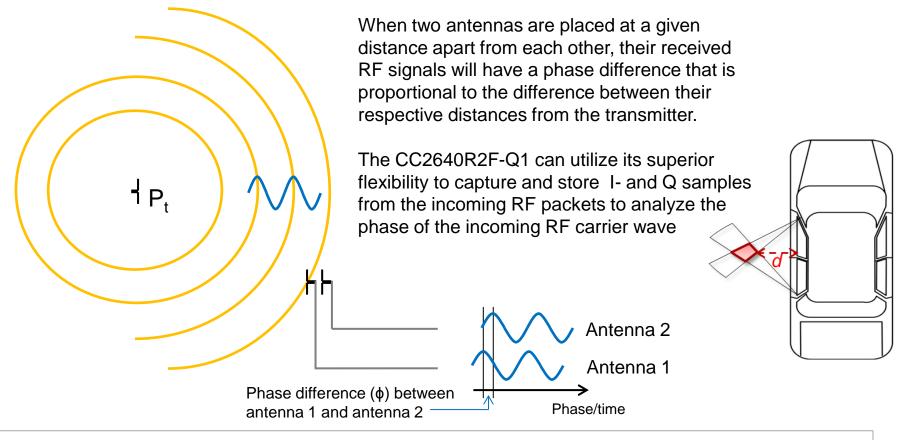
- BLE to enable Relay Attack Prevention, PEPS, PaaK
 - 4+ nodes gives better robustness and accuracy
 - TI provides a localization solution
 - RSSI with Connection Monitor
 - o Angle of Arrival
 - Time of Flight

Real Time Locationing System (RTLS) TI's solution for Localization

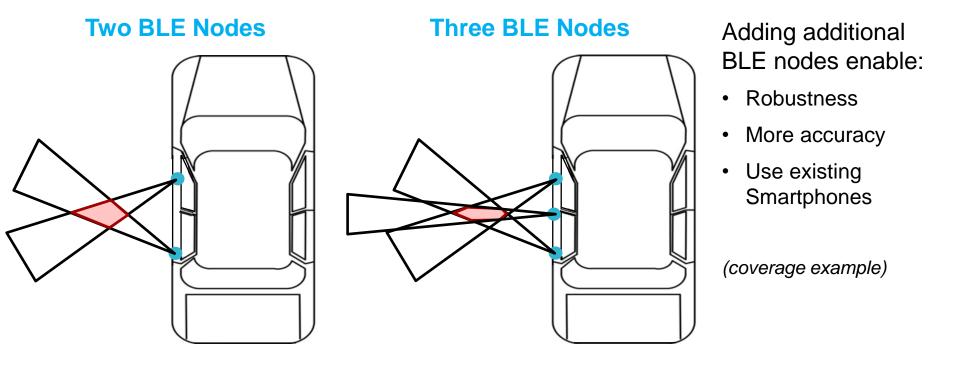
RSSI with Connection Monitor

Time of Flight (ToF)

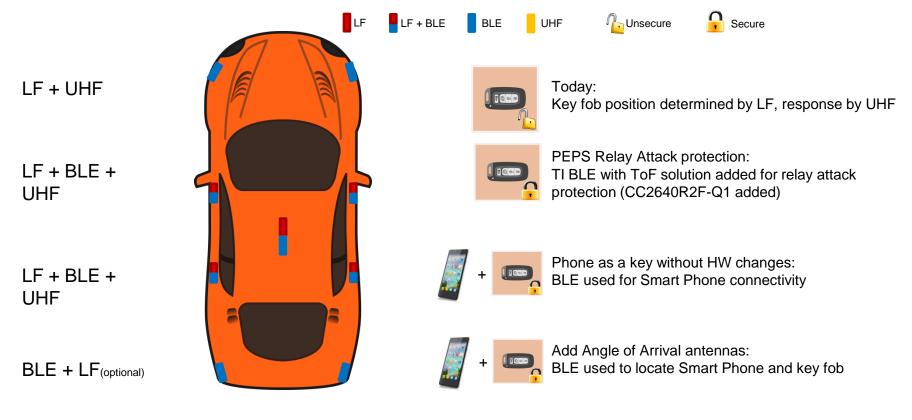

Angle of Arrival (AoA)


Relay Attack Prevention: Time-of-Flight (ToF)

- Provides "relay attack" protection in BLE-based key fobs
- Features
 - Ranging with <2m accuracy
 - Custom packets exchanged between devices
 - "Secure distance bounding scheme can be implemented to detect relayed signals
 - Turnaround time for key fob



Localization: Angle of Arrival (AoA)



Localization: AoA with Multiple Nodes

Extending today's car access system

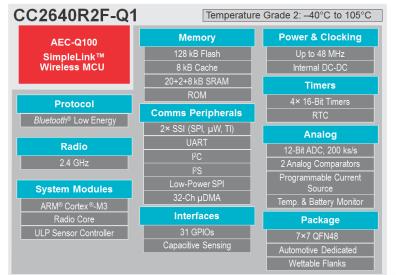
CC2640R2F-Q1 Automotive Wireless MCU

Features and Benefits

- AEC-Q100 automotive gualified
- Most integrated wireless MCU Design versatility and single-chip SoC
- Lowest power consumption ~6mA radio RX/TX and low sleep current for increased battery life
- Longest range 101 dB link budget for increased range and reliability
- Grade 2 Temperature Rating (-40°C to +105°C) Use in areas where elevated temperatures are common
- Wettable flanks package Enables faster and lower cost production line inspection

Software and Tools

- Software Development Kit, including royalty free Stack
- BT v4.2 support with qualified Adopted Profiles (BLE 3.x)
- SmartRF Studio & TI iOS/Android Multitool
- Sensor Controller Studio



CC2650 SensorTag

CC2640R2F LaunchPad

http://www.ti.com/product/cc2640r2f-q1

- **Example Applications**
 - Car Access (RKE, PKE, PEPS)
- Car sharing
- Piloted parking
- · Power seats with memory · Cable replacement and remote control
- Proximity sensing
- Interior lighting control
- Wireless On-Board Diagnostics

TIDA-01632 Automotive BLE Receiver Module Reference Design

TIDA-01632 Automotive BLE PEPS Satellite Node TIDEsigns

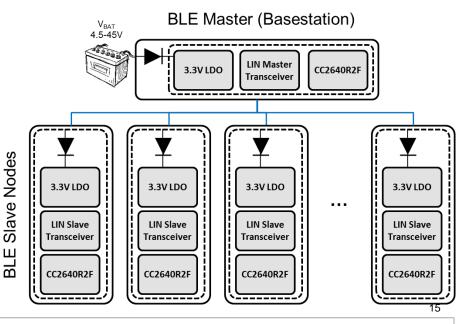
Design Features

- Single master module & multi-slave modules that communicate via LIN:
- Master Module:
 - · Usually located in BCM, Gateway, or Telematics Module
 - LIN Master + Wide VIN 3.3V LDO + BLE MCU master
 - · Master module connects to phone & shares connection info
- Satellite (Slave) Module:
 - Multiple slave modules to detect RSSI and Angle or Arrival
 - RF MUX for switching between 2 co-linear PCB antennas
 - LIN Slave + Wide VIN LDO + BLE MCU
 - · Slaves monitor BLE communication without connecting to phone

Applications

Car Access Passive Entry Passive Start (PEPS) Systems

Design Benefits


- Able to survive load dump voltages up to 45V
- Able to handle input voltages down to 4.5V
- Low power sleep mode with wake over LIN: < 25µA @ 14 V Supply
- Able to sense three proximity ranges
 - Driver approaching where puddle & interior lights turn on
 - Driver within 2 meters typically when doors unlock
 - Driver and phone inside car driver able to turn on car

Tools & Resources

- TIDA-01632 Tools Folder
- Design Guide
- **Design Files:** SCH, BOM, Gerbers
- BEL > Security Systems > PEPS

Device Datasheets:

- <u>CC2640R2F-Q1</u>
- <u>TLIN1029-Q1</u>
- <u>TPS7B82-Q1</u>

TIDA-01632 Demo

SensorTag – "Key Fob with CC2640R2F"

TIDA-01632 E1

									COLO 20-20-20 C-20-20 C-20-20-20-20-20-20-20-20-20-20-20-20-20-		
											Exceed 1
<u>File W</u> indow <u>M</u> aster F <u>i</u> rmwa						Saleae Logic 1.2	.18 - [Conn	ected] - [16 M	and a state		
2 2×8 580 0	Start	^						Antenna 1	Antenna 2		
Classifiadau											
Clear window 2M-1: 0C FF, F7, B6, 07, 27, 00, 00, 00, 06		ð 🛛									
22M-1:0C FF, FC, B1, 06, AC, 00, 00, 00, 52 22M-1:0C FF, DD, BF, 07, A1, 00, 00, 00, 6D 22M-1:0C FF, DC, AD, 07, 27, 00, 00, 00, FA 22M-1:0C FF, CF, AF, 07, 27, 00, 00, 00, FD 22M-1:0C FF, CF, AF, 07, 27, 00, 00, 00, 06		Ö× -	Header Break	Sync 0x0C	OxFF	0xD9 0xC2		0xA1 0x00			
22M-1: 0C 1 FF, C7, B7, 07, 27, 00, 00, 00, 06 22M-1: 0C 1 FF, DF, B2, 07, 47, 00, 00, 00, 9A 22M-1: 0C 1 00, 19, C3, 07, 27, 00, 00, 00, A8 22M-1: 0C 1 00, 14, C3, 07, 27, 00, 00, 00, A9 22M-1: 0C 1 00, 14, C3, 07, 27, 00, 00, 00, A0 22M-1: 0C 1 FF, FD, B6, 07, 27, 00, 00, 00, D0 22M-1: 0C 1 FF, FD, B6, 07, 27, 00, 00, 00, 00		¢×									
2M-1: 0C 00, 0C, AD, 07, 27, 00, 00, 00, CB 2M-1: 0C FF, D8, BF, 07, 27, 00, 00, 00, EC	UIN RX TID	<u>सि</u> म् =									
22M-1: 0C 1 FF, F3, C1, 07, 27, 00, 00, 00, CF 22M-1: 0C 1 FC, C, BF, 07, 27, 00, 00, 00, F8 22M-1: 0C 1 00, 00, BD, 07, 27, 00, 00, 00, BA 22M-1: 0C 1 00, 1B, BA, 07, A1, 00, 00, 00, 35 22M-1: 0C 1 FF, FF, BD, 07, 27, 00, 00, 00, C7 22M-1: 0C 1 FF, F8, B5, 07, 27, 00, 00, 00, 06 2M-1: 0C 1 FF, F8, B5, 07, 27, 00, 00, 00, 06		Ø×									
2M-1: 0C FF, FA, C2, 07, 27, 00, 00, 00, C7											
2M-1: 0C FF, E6, BE, 07, A1, 00, 00, 00, 65 (2M-1: 0C FF, D6, B4, 07, A1, 00, 00, 00, 7F		¢×									
2M-1: 0C 00, 0B, BC, 07, 27, 00, 00, 00, BD 2M-1: 0C 00, 08, A8, 07, 27, 00, 00, 00, D4 2M-1: 0C 00, 09, BB, 07, A1, 00, 00, 00, 46		¢ ×									
224-1: 0C FF, FB, BA, 07, 27, 00, 00, 00, 00, CE 224-1: 0C FF, F0, C3, 07, A1, 00, 00, 00, 56 224-1: 0C FF, D4, C6, 07, 27, 00, 00, 00, E9 224-1: 0C FF, FD, B9, 07, 27, 00, 00, 00, CD 224-1: 0C 00, 05, C6, 07, 27, 00, 00, 00, B9 224-1: 0C FF, D9, B8, 07, 27, 00, 00, 00, B9 224-1: 0C FF, D9, B8, 07, 27, 00, 00, 00, EF			•								
2M-1: 0C FF, DE, BA, 07, A1, 00, 00, 00, 71 2M-1: 0C FF, D4, BC, 07, A1, 00, 00, 00, 79 2M-1: 0C FF, DD, BD, 07, 27, 00, 00, 00, E9 2M-1: 0C FF, E5, BC, 07, A1, 00, 00, 00, 68	Q= Capture	»/									

Sharing Data via LIN

Key Takeaways

- Why BLE in Automotive
 - Low cost, low power smartphone connectivity
 - BLE can solve Relay Attack
 - One system, multiple use cases (Relay Attack Prevention, Phone as Key, PEPS, RKE, Cable Replacement)
- Why TI BLE
 - Long term Experience and Commitment to SimpleLink Automotive platform
 - TI Automotive quality, including ASPICE compliance software
 - Software Innovation (BT5 Long Range, ToF, AoA and more coming)
- Resources
 - <u>AoA demo video</u>
 - <u>RTLS SimpleLink Academy Training</u>

Q&A

