Active Clamp Flyback Converter 主動鉗位式返馳轉換器

Power Delivery Webinar

Speaker : Adam Lin

Soft-Switching Passive Clamp Flyback

V_{bulk}

PCF-Aux

Active Clamp Flyback

Eliminates switching losses and reduces EMI with proper control of the clamp which allows zero voltage switching (ZVS) to be achieved.

Improves efficiency over traditional Flyback converters by recirculating the leakage energy and delivering it to the output instead of dissipating it

Enables greater power density Lower switching losses enables higher switching frequencies, which allows for smaller passive components. Lower temperature rise allows tighter packaging.

TI Active Clamp Flyback vs Existing Solutions

TI Confidential - Selective Disclosure

TI Active Clamp Flyback Chipset

More power in less space

UCC28780 Active Clamp Flyback

- High frequency without a heatsink
- 1 MHz GaN or Si FET support
- Best in class efficiency from innovative ZVS algorithm
- Advanced protection features
- 3 patents filed

UCC24612 Advanced Sync Rectifier

High performance, simplified design

- Up to 1 MHz support with Si FET
- Wide voltage range operation
- Intelligent control provides near ideal diode emulation

UCC28780 Design Support Tools

Why Galium Nitride (GaN) FET ?

Advantages of active clamp flyback are further increased with GaN power devices

UCC28780 is optimized to interface with GaN FETs

UCC28780 | High Frequency Active Clamp Flyback

Features

- Externally programmable for optimization with either Silicon (Si) and Gallium Nitride (GaN) power FETs
- Zero voltage switching (ZVS) over wide operating range
 - Advanced auto-tuning and adaptive dead-time optimization
- Switching frequency up to 1 MHz
- Secondary side regulation for CV/CC operation
- Multimode Control enables high efficiency while mitigating audible noise
 - Adaptive burst mode, adaptive amplitude modulation, low power mode, standby power mode
- Accurate Programmable Over-Power Protection (OPP) enables high power density and reduction in component size
- Fault Protections
 - Over temperature, output over voltage, over current limit, short circuit, pin fault

Applications

- High-Density AC-to-DC Adapters for Notebook, Tablet, TV, Set-Top Box and Printer
- USB Power Delivery, Direct and Fast Mobile Chargers
- AC-to-DC or DC-to-DC Auxiliary Power Supply

TI Confidential - Selective Disclosure

Benefits

- DoE Level VI and CoC V5 Tier-2 EPS standards compliant
- Flexible to work with both Si FET driver or GaN power stages
- ZVS reduces switching losses for higher switching frequency
 - Reduced transformer size and generated EMI
- External HV startup FET enables standby power below 75 mW
- Multimode Control maximizes performance
 - Maintain ZVS over line, load and component tolerances
 - Highest average efficiency for entire load range
 - Reduces output voltage ripple
 - Mitigates audible noise

UCC28780 Adaptive ZVS Active Clamp Flyback Controller

Features	High Power Density Efficient operation up to 1 MHz can reduce solution sizes by up to 50% when compared to existing 25-100 W flyback
Discovery questions	High Efficiency Adaptive ZVS algorithm achieves high efficiency and performance that exceeds DoE Level VI and CoC Tier-2 EPS standards
Pricing, availability, resources	Accurate Fault Protection Fast and accurate over power protection reduces passive component size and enables high power density
	Flexible Implementation Externally programmable for optimization with either GaN or Si FET

TI Confidential – Selective Disclosure

UCC28780 Adaptive ZVS Active Clamp Flyback Controller

UCC28780 Adaptive ZVS Active Clamp Flyback Controller

Features	Product Info: http://www.ti.com/product/UCC28780 Pricing 1Ku: \$0.60 Availability: • Silicon Samples: http://www.ti.com/product/UCC28780/samplebuy
Discovery questions	 GaN Based Evaluation Board: <u>http://www.ti.com/tool/ucc28780evm-002</u> Datasheet: <u>http://www.ti.com/lit/ds/symlink/ucc28780.pdf</u> GaN SIMPLIS Model: <u>http://www.ti.com/lit/zip/slum626</u> Si SIMPLIS Model: <u>http://www.ti.com/lit/zip/slum643</u> Mathcad Design Calculator: <u>http://www.ti.com/lit/zip/sluc644</u>
Pricing, availability, resources	Additional resources: • Support (E2E): <u>http://e2e.ti.com/support/power_management/isolated_controllers/</u>

UCC28780 Customer Collateral

Content type	Content title	Link to content or more details
Training Video	What is an Active Clamp Flyback?	https://training.ti.com/what-active-clamp-flyback
Technical Note	Increasing Power Density With the Active Clamp Flyback Controller (UCC28780)	http://www.ti.com/lit/an/slua871/slua871.pdf
Training Video	Making power supplies smaller: An overview of the active clamp flyback chipset	https://training.ti.com/making-power-supplies-smaller-overview-active- clamp-flyback-chipset
GaN Reference Design	30-W/in ³ , 94% Efficiency, 65-W USB Type-C PD AC/DC Adapter Reference Design	http://www.ti.com/tool/TIDA-01622
Si Reference Design	High Efficiency, High Power Density Active Clamp Flyback Adapter with SJ FET Reference Design	http://www.ti.com/tool/PMP40328
Evaluation Module (EVM)	45-W High-Density Active-Clamp Flyback AC-DC Converter Evaluation Module Using GaN MOSFETs	http://www.ti.com/tool/ucc28780evm-002
Datasheet	UCC28780 Datasheet	http://www.ti.com/lit/ds/symlink/ucc28780.pdf
Design Calculator	UCC28780 Mathcad Design Calculator	http://www.ti.com/lit/zip/sluc644
GaN SIMPLIS Model	GaN based UCC28780 and UCC24612 SIMPLIS simulation model	http://www.ti.com/lit/zip/slum626
Si SIMPLIS Model	Si based UCC28780 and UCC24612 SIMPLIS simulation model	http://www.ti.com/lit/zip/slum643
High Voltage Interactive Technical Training Video	Active Clamp Flyback (Part 1 and 2)	Part 1: https://training.ti.com/active-clamp-flyback-part-1?cu=1134585 Part 2: https://training.ti.com/active-clamp-flyback-part-2?cu=1134585
	Hysteresis loss in high voltage MOSFETs: Findings and effects for high frequency AC-DC converters	https://training.ti.com/hysteresis-loss-high-voltage-mosfets-findings- and-effects-high-frequency-ac-dc-converters
Power Supply Design Seminar	Comparison of GaN and Silicon FET-Based Active Clamp Flyback Converters	Part 1: https://training.ti.com/gan-and-silicon-fet-based-acf-1?cu=1135482 Part 2: https://training.ti.com/gan-and-silicon-fet-based-acf-2?cu=1135482 Part 3: https://training.ti.com/gan-and-silicon-fet-based-acf-3?cu=1135482

Operation Details

TI Confidential - Selective Disclosure

UCC28780 Simplified Schematic

TI Confidential - Selective Disclosure

Copyright © 2018, Texas Instruments Incorporated

Zero Voltage Switching

- High voltage sensing network measures voltage on the switch node and modulates PWMH (high side clamp FET) on time and dead time to achieve ZVS
 - Adjustment of PWMH and PWML effectively optimizes demagnetization time t_{DM}
 - Achieves ZVS with least amount of circulating current necessary
- Allows for auto detection and tuning to guarantee ZVS, regardless of component tolerance and parameter shift

Zero Voltage Switching

Measured results of UCC28780 adaptively achieving **ZVS** Purple: Switch Node Voltage Green: Transformer Primary Current Blue: PWMH Brown: PWML

Adaptive, auto tuning control enables zero voltage switching with least amount of circulating current

Difference Between Si and GaN

- Optimal way to drive GaN and Si FET in ACF is slightly different
 - GaN has smaller and less non-linear output capacitance (C_{OSS}) when compared to Si FET, especially super junction
- Connecting SET pin to REF (5V) enables Si FET timing control
- Connecting SET pin to GND (0V) enables GaN FET timing control

Benefit of GaN FET + Si SR for ACF

P. Liu, "Design Consideration of Active Clamp Flyback Converter with Highly Nonlinear Junction Capacitance," APEC'18

Modes of Operation

UCC28780 has 4 different modes of operation based on power level

Full Load: Adaptive Amplitude Modulation (AAM) Medium Load: Adaptive Burst Mode (ABM) Light Load: Low Power Mode (LPM) No Load: Standby Power Mode (SBP)

	Mode	Operation	РШМН	ZVS
AAM	Adaptive Amplitude Modulation	Complementary ACF	Enabled	Yes
ABM	Adaptive Burst Mode	Variable f_{BUR} >20kHz, Complementary ACF	Enabled	Yes
LPM	Low Power Mode	Fix f _{BUR} ≈25kHz, Valley Switching	Disabled	No
SBP	Standby Power	Variable f _{BUR} <25kHz, Valley Switching	Disabled	No

Full Load

Adaptive Amplitude Modulation (AAM)

- PWML and PWMH complementary switched
- $i_{m(-)}$ constant to achieve ZVS
- i_{m(+)} adjusted to regulate output voltage
 - Decreases as power level is reduced
 - Decreases as input voltage is increased
- As power level decreased or input voltage increased switching frequency is increased

Medium Load

Adaptive Burst Mode (ABM)

- Occurs when V_{CS} decreases below $V_{CST(BUR)}$
- UCC28780 enters burst mode
 - First pulse in burst does not have ZVS, but all subsequent pulses do
 - Number of pulses in burst (N_{SW}) reduced as power decreases
- Lower burst frequency f_{BUR} always above 20kHz audible range
- Threshold to enter ABM set by BUR pin

Light Load Low Power Mode (LPM)

- Occurs when number of pulses in burst (N_{SW}) is 2 and burst frequency is less than $f_{BUR(LR)}$
- PWMH is disabled
 - ZVS replaced with DCM valley switching

No Load

Standby Power Mode (SPM)

- Occurs when V_{CST} reaches $V_{CST(min)}$
- PWMH is disabled
 - ZVS replaced with DCM valley switching
- f_{BUR} reduced to achieve low standby power consumption

Fault Protection

PROTECTION	SENSING	THRESHOLD	DELAY TO ACTION	ACTION
VDD UVLO	VDD voltage	$V_{VDD(OFF)} \le V_{VDD} \le V_{VDD(ON)}$	None	UVLO reset
Over-power protection (OPP)	CS voltage	$V_{CST(OPP)} \le V_{CST} \le V_{CST(MAX)}$	t _{OPP} (160 ms)	t _{FDR} restart (1.5s)
Peak current limit (PCL)	CS voltage	$V_{CST} \le V_{CST(MAX)}$		
Over-current protection (OCP)	CS voltage	$V_{CS} \ge V_{OCP}$	3 PWML pulses	t _{FDR} restart
Output short-circuit protection (SCP)	CS, VS, and VDD voltages	(1) $V_{VDD} = V_{VDD(OFF)} \& V_{CST} \ge V_{CST(OPP)}$; (2) $V_{VDD} = V_{VDD(OFF)} \& V_{VS} \le 0.6 V$	≤ t _{OPP}	t _{FDR} restart
Output over-voltage protection (OVP)	VS voltage	$V_{VS} \ge V_{OVP}$	3 PWML pulses	t _{FDR} restart
Brown-in detection	VS current	$I_{VSL} \leq I_{VSL(RUN)}$	4 PWML pulses	UVLO reset
Brown-out detection	VS current	$I_{VSL} \leq I_{VSL(STOP)}$	t _{BO} (60ms)	UVLO reset
Over-temperature protection (OTP)	NTC voltage	R _{NTC} ≤ R _{NTCTH}	3 PWML pulses	UVLO reset until R _{NTC} ≥ R _{NTCR}
Thermal shutdown	Junction temperature	$T_{J} \ge T_{J(STOP)}$	3 PWML pulses	UVLO reset

 UCC28780 has extensive integrated fault protection

- Accurate and fast response allows for reduced component oversizing
- Additionally includes device pin open/short protection

Why 16 pins?

TI Confidential - Selective Disclosure

Function	Pin	Description
	VDD	Bias from aux winding
Piece	REF	5V reference; +Bypass cap 0.1uF
DIdS	HVG	Bias D-FET; +Bypass cap 2nF
	GND	Ground return
	SWS	HV startup; switch node monitoring
	VS	Resistor divider for line and NVo sensing; zero-crossing detect (ZCD)
Sense	CS	current sensing; program OPP by a line comp resistor
	FB	Sense optocoupler current for output regulation
	NTC	OTP; disable PWM if short
	PWML	Control high-side switch driver
Output	PWMH	Control low-side switch driver
	RUN	Enable driver; PWML/H active after RUN goes high
	RDM	Set synthesized DeMagnetization time for ZVS tuning
Dreaker	RTZ	Set transition time to zero delay at high line
Program	BUR	Set peak current level at high line entering into adaptive burst mode
	SET	SET primary switch type (Si FET to REF; GaN FET to GND)

4 pins used to program UCC28780 to compensate for parasitic impact and optimization for unique implementation

25

Texas Instruments

Experimental Results

TI Confidential - Selective Disclosure

Reference Designs

Power Level	Output Voltage	FET	Reference Number
45W	20V	GaN	UCC28780EVM-002
45W	20V	Si	UCC28780EVM-021
65W	USB PD (5, 9, 15, 20V)	GaN	TIDA-01622
65W	USB PD (5, 9, 15, 20V)	Si	PMP21479

UCC28780EVM-002 Overview

GaN Based Design

Input: 85-265VAC RMS, 47-63Hz Output: 20V, 45W

Board Dimensions: 2.32in x 1.32in x 0.68in Open Frame Power Density: 21.5W/in³ www.ti.com/tool/UCC28780EVM-002

UCC28780EVM-002 Specification Details

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
INPUT C	HARACTERISTICS					
VIN	Input line voltage (RMS)		90	115 / 230	264	V
f _{LINE}	Input line frequency		47	50 / 60	63	Hz
PSTBY	Input power at no-load	V _{IN} = 115 V _{RMS} , I _{OUT} = 0 A		41.1		mW
PSTBY	Input power at no-load	V _{IN} = 230 V _{RMS} , I _{OUT} = 0 A		52.8		mW
P _{0.25W}	Input power at 0.25W load	V _{IN} = 115 V _{RMS} , P _{OUT} = 250.6 mW		383.8		mW
P _{0.25W}	Input power at 0.25W load	V _{IN} = 230 V _{RMS} , P _{OUT} = 250.6 mW		435.0		mW
OUTPUT	CHARACTERISTICS	1				
v	Output units	V _{IN} = 115 V _{RMS} , I _{OUT} = 2.249 A		19.853		V
VOUT	Output voltage	V _{IN} = 230V _{RMS} , I _{OUT} = 2.249 A		19.852		v
	Outra to a literat	V _{IN} = 115 V _{RMS} , I _{OUT} = 0 A		19.943		N
VOUT	Output voltage	V _{IN} = 230V _{RMS} , I _{OUT} = 0 A		19.948		v
lout	Full load rated output current	V _{IN} = 90 to 264 V _{RMS}		2.25		А
V _{OUT_pp}	Output ripple voltage	V _{IN} = 115 V / 230 V _{RMS} , I _{OUT} = 0 to 2.25		80		mVpp
V _{OUT_pp}	Output ripple voltage	V _{IN} = 115 V / 230 V _{RMS} , I _{OUT} = 2.25 A		45		mVpp
V _{OUT_pp}	Output ripple voltage	V _{IN} = 115 V / 230 V _{RMS} , I _{OUT} = 0 A		50		mVpp
P _{OUT_opp}	Over-power protection power limit	V _{IN} = 90 to 264 V _{RMS}		55		w
t _{opp}	Over-power protection duration	V _{IN} = 90 to 264 V _{RMS} , P _{OUT} = P _{OUT_opp}		160		ms
V _{OUT_A}	Output voltage deviation due to load step up	I _{OUT} step between 0 A and 2.25A		< 5		%
SYSTEM	S CHARACTERISTICS					
		V _{IN} = 115 V _{RMS} , I _{OUT} = 2.25A		94.59		%
η	Full-load efficiency	V _{IN} = 230 V _{RMS} , I _{OUT} = 2.25A		94.74		%
		V _{IN} = 90V RMS, I _{OUT} = 2.25A		93.98		%
	4 (2)	V _{IN} = 115 V _{RMS}		93.88		%
η	4-point average enciency	V _{IN} = 230 V _{RMS}		92.47		%
	Efficiency at 10% Load	V_{IN} = 115 V_{RMS} , I_{OUT} = 10% rated current		88.69		%
4	Enciency at 10% Load	V_{IN} = 230 V_{RMS} , I_{OUT} = 10% rated current		85.86		%
T _{AMB}	Ambient operating temperature range	V_{IN} = 90 to 264 V_{RMS} , I_{OUT} = 0 to 2.25A		25		°C

(1) The performance listed in this table is achieved using secondary resonance and based on the test results from a single board.

⁽²⁾ Average efficiency of four load points, $I_{OUT} = 25\%$, 50%, 75% and 100% nom.

TI Confidential - Selective Disclosure

www.ti.com/tool/UCC28780EVM-002

UCC28780EVM-002 Schematic

UCC28780EVM-002 Measured Efficiency

High efficiency over entire load and line range

exceeds standards DoE Level VI and CoC Tier 2 www.ti.com/tool/UCC28780EVM-002

Adaptive Amplitude Modulation (AAM)

Sensing with auto-tuning guarantees ZVS during operation

www.ti.com/tool/UCC28780EVM-002

Adaptive Burst Mode (ABM)

ZVS achieved during bursts of transition mode (TM) operation followed by discontinuous conduction mode (DCM), except for first cycle of burst packet TI Confidential – Selective Disclosure WWW.ti.com/tool/UCC28780EVM-002

UCC28780EVM-002 Accurate OPP

Home Infidential - Selective Disclosure

Over power protection threshold varies by less than 3W over input voltage range

www.ti.com/tool/UCC28780EVM-002

UCC28780EVM-002 Thermal Measurement

Home Infidential – Selective Disclosure

www.ti.com/tool/UCC28780EVM-002

Modification for Si FET GaN ACF

UCC28780EVM-002

CAUTION HOT SURFACE

Si ACF UCC28780EVM-021

	Resonance Approach	Pri FET	High-side Driving	C _{clamp}	R _{RTZ}
GaN ACF	Sec. resonance	NV6117(Q _L) NV6115 (Q _H)	ISO7710F	0.44µF	240kΩ
Si ACF	Sec. resonance	CP 350mΩ	UCC27712	0.88µF	348kΩ

TI Confidential – Selective Disclosure

Use same EMI filter, input/output filter, and transformer for a fair comparison.

Texas Instruments

45W Full-Load Efficiency Comparison

- Si ACF provides 3.6% improvement over Si QR at 265Vac.
- With same EMI filter, Si ACF is 1% lower than GaN ACF at 90Vac.

31W/in³, 94% Efficiency, 65W USB-PD AC/DC Adapter Reference

Design / TI Design: TIDA-01622

	A I	
· · ·		

- Active-clamp Flyback + SR topology (UCC28780+UCC24612)
- Wide AC input range: 85 265 VAC, Output ripple voltage <=200mV@20V
- Fully compatible with USB PD 2.0 standard , with 5V/3A, 9V/3A, 15V/3A, 20V/3.25A output.
- 94% Peak efficiency

Features

- Robust OCP/ SCP /OPP with Auto Recovery, OVP latch
- No load power <=75mW (60mW), 20Vout@0.25W Pin<=0.5W
- Meets Norms: EN-55032 class B (CE)

З

1W/in

 ∞

Target Applications

- Notebook PC power adapter
- Other 60W AC/DC converter
- Smartphone wall charger

Tools & Resources

- TIDA-01622 and Tools Folder
- <u>Design Guide</u>
- Design Files: Schematics, BOM, Gerbers
- Device Datasheets:
 - <u>UCC28780RTE</u>, <u>UCC24612-1</u>,
 - TPS25740B, ATL431, ISO7710F
- 64mm*28.6mm*18.4mm

- Solution is based on the both-ended type-C cable
- Enable UCB PD 2.0 fully compatible AC/DC adapter design.
- Leading power density with active-clamp flyback topology in high switching frequency
- Meet DoE level VI & CoC Tier2 regulation
- Robust protection built-in

Benefits

65W Efficiency Data 115V/60Hz

🜵 Texas Instruments

65W Efficiency Data 230V/60Hz

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com