GaN Power Devices: From Watt to Kilo-Watt Power Applications

Lixing Fu Systems Engineer Texas Instruments

TI training – summary

GaN: Watt to KW Power Applications

TI's Portfolio of GaN FETs with integrated driver and protection are in mass production and are enabling designers to reach unprecedented levels of power density and efficiency in every power level and end-equipment. These cost-competitive solutions are found in applications such as robotics, solar converters, telecom, grid infrastructure, AI servers, networking, industrial power supplies, and personal electronics.

What you'll learn:

- Learn about how the LMG3410 can bring differentiation in a typical application
- Integration for system performance and reliability
- · Overview of GaN applications: power supply, motor drive, wall adapter

2

Detailed Agenda

- GaN Overview
- Why LMG3410x GaN?
- Half-bridge Solutions
- GaN Applications:
 - High Density Power Supply Designs
 - High Efficiency Motor Drives
 - Ultra-Small USB PD and AC-DC Solutions
- Summary

GaN Overview

GaN: Key Advantages Over Silicon FET

GaN: Ready to Take you Beyond Silicon Today

- GaN devices are enabling solutions with twice the power density of what is possible with best-in-class superjunction FETs
- TI LMG3410x GaN devices are now in production with our customers ramping to mass production now.
 - 3kW Telecom Rectifier
 - Class-D Audio Amplifier
 - 3D Printer
 - Factory Robotics Drive
 - OLED TV PSU

LMG3410x: GaN performance beyond Silicon

Why LMG3410x GaN?

LMG3410x GaN: Ready to Use Now

LMG3410x: Integrated Driver Ease of Design & Higher Efficiency

LMG3410x: Integrated Driver Design Simplicity & Smaller HB BOM

Challenges of GaN Designs with **External** Driver and Protection

 Driver Bias Voltage: GaN gate bias is critical to its performance and long-term device reliability

- Protection: Designing a robust overcurrent protection circuit at high slew rate is difficult and costly.
- TI Information Selective Disclosure

 Parasitic Inductance: causes switching loss, ringing and reliability issues, especially at high GaN frequencies

Parasitic Effect: Common Source Inductance

- Common Source inductance reduces the di/dt during turn-on and turn-off.
 - Increases power dissipated during the di/dt ramp
- 5nH common source inductance increases turn-on loss by 60%

Parasitic Effect: Gate Loop Inductance

- Gate loop inductance increases the impedance between the gate and the driver.
 - Limits the ability to hold off the GaN device during the Vds ramp
 - Shoot through increases the power dissipated in the high-side device and can cause it to fail due to SOA.
- · Gate loop inductance increases ringing
 - Higher stress on gate
 - Ringing can cause the device to turn-on/off
 - Loop resistance is required to dampen ringing

Low-side hold-off versus gate-loop inductance red = 2 nH, green = 4 nH, blue = 10 nH

14

Parasitic Effect: Power Loop Inductance

- Power loop inductance
 - Increases Ringing and EMI
 - Increases V_{ds} voltage stress
 - Increase switching losses
- Package must be designed to enables low power loop inductance PCB layout
- GaN must be switched without snubber to have high efficiency

Common Source & Gate Loop: Comparison

Discrete GaN: Limited Switching Performance

Integrated Driver Allows Faster Switching

TEXAS INSTRUMENTS

* @turn-on at 400V V_{bus} 10A with default driving configuration on EVM ** dv/dt measured within 10%-90% V_{bus}

LMG341x: Robust to Surge

- The IEC 61000-4-5 standard specifies the surge waveform.
- The VDE 0884-11 standard specifies the application of 50 strikes.
- The TI test consists of an additional 50 strikes, to assure margin.

TI Information - Selective Disclosure

LMG341x: Robust 100ns Overcurrent Protection

Latched (LMG3410Rxxx)

In an OCP event, the device is turned off in less than 100ns and held off until the fault is reset by either holding the IN pin low for >350µs

TI Information – Selective Disclosure

 Cycle-by-Cycle (LMG3411Rxxx) In an OCP event, the device is turned off in less than 100ns and held off until the next PWM cycle

Discrete OCP Implementation: External Components

Discrete OCP Implementation: Performance

12.7mm x 6mm

Parameter	Resistive Shunt 2X 12mΩ (25mΩ /2)
Added PCB Area	233 mm ²
Added Power Loop Inductance	1.2nH
dv/dt	80V/ns
Additional Power Loss at Po=1.2kW	0.9W

LMG341x: Reliable and In Mass Production

- Over 20 million hours of reliability testing to date
- < 1 FIT rate for 10 year lifetime</p>
- ✓ JEDEC JESD47 qualification complete
- Hard-switching reliability complete
- Dynamic Rds-on testing complete
- ✓ Long term in-application testing complete
- Extreme Short-circuit and surge testing complete
- ✓ In mass production with 100% TI owned fab

LMG3410x GaN: Ready for Watts to 10kW

High Density Power Supply Designs

Power Supply Architecture: PFC and LLC

MOSEET active rectifier

TI Information - Selective Disclosure

600VGaN

TEXAS INSTRUMENTS

LMG3410x GaN: Maximize Power Density

Silicon PFC @ 1.6kW

GaN PFC @1.6kW

- 2x higher density
- 50% reduction in magnetics
- 2 GaN replaces 2 SJ and 2 SiC diodes
 - 2-3% Higher Efficiency

TIDA-00961

Power Density: 37 W/in³

Power Density: 70 W/in³

TI Information – Selective Disclosure

27

GaN PFC Solution: Superior Power Supply Design

- Higher efficiency
 - Reduced power loss by 36%
- Higher power density
 - 2X power density in Totem-pole PFC versus Silicon
- Solution cost parity
 - Reduced magnetics and external components bring total solution cost down

	Loss Mechanism	Dual	Boost PFC with Silicon	Totem-pole PFC with GaN
	Switching FET Cond.		0.6 W	2.06 W
	SiC Diode Cond.		2.75W	-
	FET Eoss / SiC Diode Qoss		3.9 W	2.4W
	I-V Overlap		1.47 W	0.95W
	Rect. Diodes / FETs		0.45 W (FET)	0.45 W (FET)
TI Information – Sele	Total Power Losses		9.17W	2 5.86W

GaN in LLC: Superior Power Supply Design

Reduced Output Capacitance Coss

- Reduces dead-time, increasing the time when current delivered to the output
- Allows larger magnetizing inductance and lower circulating current losses as well as transformer fringe-field losses
- Reduced Gate Driver Losses
- System Optimization
 - GaN enables higher switching frequency to reduce magnetic components significantly
 - GaN enables LLC converter with higher efficiency and higher power density

PMP20637: 1MHz Isolated LLC DCDC Converter

Parameter	Value
Input Voltage	380 – 400V
Input Frequency	≤ 1MHz
Output Voltage	48V
Output Power	1 kW
Switching Frequency	≤ 1MHz
Efficiency	97%

Power Density: 140 W/in3

4x Density and 98% Efficiency Comparison with MOSFET

GaN Si Superjunction 98.5% Reduced capacitance & 98.0% circulating currents 97.5% dramatically improve light-97.0% load efficiency Efficiency 96.5% 96.0% 95.5% 95.0% **Resistance** Limited 94.5% (slight improvement) 94.0% 0 10 20 30 40 50 **Output Current [A]** TI Information - Selective Disclosure

High Efficiency Motor Drives

Factory Automation & Robotics System Diagram

New Trend: Integrated Motor Drives

Integrated Drives with GaN

- ✓ Compact form factor
- ✓ Fan-less operation
 - No fan failures, higher reliability
- ✓ Integrated design
 - High dv/dt operation
 - DC distribution saves cabling cost
 - Noise immunity on comm and encoder lines
 - Factory floor savings

6-axis 4.5kW robotic arm

LMG3410R150: Enabling Integrated Motor Drive

Silicon Servo Drive @1.5kW

 75% reduction Factory Floor Cabinets

- 90% less power and communication cabling
- 85% smaller heatsink and NO-FAN

TIDA-00915

Integrated GaN based Motor Drive

Cooling Area: *Fan* + 145 x 82 x 42 mm

*in 6 axis robotic system

Cooling Area: <u>No Fan</u>: 80 x 46 x 20 mm

TI Information - Selective Disclosure

🦊 Texas Instruments

TIDA-00915: 1.2kW 3Φ Integrated Drive

TI Information - Selective Disclosure

Solution Features

- Ultra-small form factor with power density of 150W/in3
 - 50°C ambient conditions up to 1.25kW
 - 85°C ambient conditions up to 550W
- Peak efficiency > 99%
- Natural convection cooling with 10mm heatsink
- Built-in short-circuit and over temperature protection
- 450V Max DC Operation

Applications

- Integrated motor drives
- Robotics
- Servo drivers

36

TIDA-00915: Natural Convection Cooling

Heatsink: 10mm fin height Peak efficiency > 99.2%

GaN: Enabling Smart Motor Drive

- GaN reduces or eliminates heatsink
- GaN increases PWM frequency and reduces switching losses
 - Drive very low inductance PM synchronous motors or BLDC motors
 - High-speed motors (e.g. drone) achieves sinusoidal voltage above 1-2kHz frequency
 - Precise positioning in servo drives/steppers through minimum torque ripple
- GaN eliminates dead-time distortions of phase voltage
 - Better light load and THD performance
- GaN reduces or eliminates switch node oscillations
 - Lower radiated EMI, no additional snubber network (space, losses) required

Ultra-Small USB PD and ACDC Solutions

LMG3410x GaN: Achieve Ultra-Small Solutions

TI Information - Selective Disclosure

GaN >500kHz

Active Clamp Flyback

Eliminates switching losses and reduces EMI with proper control of the clamp which allows zero voltage switching (ZVS) to be achieved

Improves efficiency over traditional Flyback converters by recirculating the leakage energy and delivering it to the output instead of dissipating it

Enables greater power density Lower switching losses and corresponding temperature rise enables higher switching frequencies, which allows for smaller passive components and tighter packaging

PMP21639: 65-W USB Type-C PD AC/DC Adapter Reference Design

Features

- 100% TI GaN solution, ACF, and SR controllers
- Requires only ONE GaN Device
- High efficiency (94% Peak)
- High power density (>30W/in³)
- Low light-load input power (0.5W), @20Vout/0.25W output
- Fully compatible with USB PD 2.0 standard, with 5V/3A, 9V/3A, 15V/3A, 20V/3.25A output
- Small size (62mm*28.6mm*18.4mm)

42

TI-GaN Active Clamp Flyback Solution

More power in less space

LMG3411R150 GaN Power Stage

- 600V 150mΩ single-chip GaN with driver and protection
- 100ns cycle by cycle short-circuit protection

UCC28780 Active Clamp Flyback

- Best in class efficiency and innovative ZVS algorithm
- Advanced protection features

UCC24612 Advanced Sync Rectifier

- Wide voltage range operation
- Intelligent control provides near ideal diode emulation

PMP21639: Why Si on the High-Side?

- 65W TM flyback high-side
 - High side $\rm I_{rms}$ << low side $\rm I_{rms}$
 - can tolerate $R_{dson} > 1\Omega$
 - $\rm C_{sw}$ dominated by $\rm C_{oss}$ of low side FET
- Trade offs of Si FET on high side:
 - + Significant cost savings
 - + Simplified drive for high side FET
 - + Avoid any boot-strap issues at no load
 - Minor impact on efficiency

Key Takeaways

- TI GaN portfolio supports applications from Watts to 10kWs, enabling a new generation of power conversion designs with high power density and efficiency
- GaN enables 2X power density improvement on a PFC stage at system level cost parity
- 1MHz isolated LLC design delivers 6x reduction in size and weight of the solution
- GaN decreases USB PD Charger volume by 60%
- GaN based integrated motor drive eliminates cooling, and saves factory space and cabling costs
- For products, designs, and training material, visit **<u>Ti.com/GaN</u>**

TI Information – Selective Disclosure

46