Input protection introduction: Hot-swap/eFuse/Power switch/Oring

Analog FAE : Redick Lee

Agenda

- Hot-swap
- Power switch
- eFuse
- Oring

Why Protection Devices?

- High Availability Systems
 - Cannot be shutdown
 - Redundancy, No single point of failure
 - Live maintenance
- Who uses High Availability Machines
 - Follow the money
 - Stock markets, Amazon
 - Mission Critical
 - Air traffic control, Google
- User Expectation

Hot Insertion without a Hot-Swap

What Problems are Addressed by Protection Circuits?

- Inrush Currents
- Damage
 - Connector Pins
 - Board Etch
 - Components
- Disrupt The Backplane Voltage
 - Backplane voltage droop can shutdown the system

POWER FET

LOAD

What Problems are Addressed by Protection Circuits?

- Manage Power-on
 - Power Limit
 - dv/dt
 - di/dt
- Shutdown
 - Over Voltage
 - Under Voltage
 - Current Overload
 - Load Shorted
 - Latchoff
 - Re-try

Components of a Protection Circuit

- MOSFET
 - Pass element controls flow of current to the output
- Sense Resistor
 - A few milliohm resistor senses current
- Controller
 - Reads the current sense
 - Operates the MOSFET
- Over-load
- Fast Turn Off

What is circuit protection?

- Without circuit protection, current inrush to a subsidiary device during live insertion is limited by the ESR of the capacitor's DC contact resistance.
 - Typically over 80 Amps for a 3A board or device!
- Without a Circuit Breaker / inrush-limiter there will be a logic glitch or an over designed power supply
- Circuit Breaker Limits Current Inrush and load to less than 4A (or some preset level)

Hot Swap: Power Glitch Issues

Without a Circuit Breaker, current is limited by the ESR of the capacitor's DC contact resistance.

- Typically over 80 Amps for a 3A board!

Without a Circuit Breaker there will be a logic glitch or an over designed power supply

Circuit Breaker Limits Current Inrush and load to less than 4A

Circuit-breaking vs. Current-limiting

Circuit-breaking

- Time limit above fault current threshold exceeded
- Short-circuit event (instant)

FET gate driven OFF

- Current-limiting
 - Current-limit threshold exceed
 - Gate drive ramps down
 - Current-limited to desired level
 - Output voltage may droop

Texas Instruments

Fault Timers

Hot swap managers must allow enough time for the fault condition on startup to charge bypass capacitors.

Retry Duty cycles are typically 2 - 3 % on fault conditions for auto reset parts.

External FET versions may have an additional Power Limit adjustment to reduce the duty cycle. Latch off parts are used on systems where faults should not occur

Fault times are adjusted by the Ct capacitor

Ct calculation requires knowledge of the load

- Bypass capacitance
- Load Current

Fault time = $27.8 * 10^3 * Ct$

Cout (max) = (Imax-Iload)*

After Fault Timeout

1. RETRY OPTION

Restart time is typically several seconds

 \rightarrow set by the timing capacitor C_T

→ circuit will continue to attempt restarts until the fault is removed

2. LATCH-OFF OPTION

The circuit is restarted by:

 \rightarrow cycling the input voltage off-on, or

 \rightarrow by momentarily grounding the UVLO pin

Timer Cap Function – Fault Retry Delay

The hiccup time allows adequate cooling of pass MOSFET

Idealized Typical Startup Waveforms

Common Design Errors SOA of FET Too Small

- SOA = Safe Operating Area
 - SOA Chart Every FET has one
 - Defines Bounds of FET Operation
 - V_{DS_MAX} = Vertical Limit
 - I_{D_MAX} = Horizontal Limit
 - R_{DSON} limits I_D at lower voltages
 - Theoretical P_{MAX} = 3000 W
- Fault Time Is Critical
 - Longer Fault time means bigger FET
 - Shorter Fault Time allows higher peak power
- Most Stressful FET Events
 - Startup into short
 - Shorted load while under full load
 Putting FETs in parallel does NOT improve SOA !!!

Common Design Errors SOA of FET Too Small -Example - 12 V, 50 A Server

- Without Power Limiting
 - P_{MAX} = I_{LIMIT} x V_{SUPPLY} = 600 W
 - T_{SOA_MAX} = ~800 us
- With Power Limiting
 - P_{MAX_LIMITED} = 50 W
 - $% I_{\rm AS}$ As $V_{\rm DS}$ increases $I_{\rm LIMIT}$ is reduced
 - T_{SOA_MAX} = 10 ms
 - Smaller FET can be used
 - @ 50 A will start limiting when V_{DS} > 1V
- Common Error to Pick FET Too Small

Common Design Errors Layout Issues – A Little Stray R Can Make a Big Error

- Critical Kelvin Connections
 - Sense Runs
- Critical Short Run
 - Ground
 - Gate
- High Current Runs
- Poor Kelvin Runs...
 - Inaccurate/variable I_{LIMIT}
- Poor High Current Runs
 - Voltage droop
 - Power loss
 - Overheating

Common Design Errors Inadequate Transient Protection

• All wires are inductive

Common Design Errors Inadequate Transient Protection

- To squelch inductive spikes from supply / load leads
 - Caps and/or TVS at UUT Input to clamp positive spike
 - Schottky Clamp across output to clamp negative spike

Potential Causes for Device Damage

- Parasitic Inductance on the Input and Output of a hot-swap can be detrimental to the reliability and performance of the hot-swap, especially when high currents are involved.
- By understanding the effects of these inductances, measures can be taken to insure robust operation.

Potential Causes for Device Damage

Input Supply Surge During a Fault

- The classic voltage supply inductive surge problem can cause over-voltages on the input of a hot swap
- Consider the following circuit. It is designed to simulate a circuit-breaker condition on a hot swap.

Input Supply Surge

BEFORE THE GATE IS SHORTED TO VOUT

→ IOUT runs continuously through the pass FET, and LPARASITIC

Input Supply Surge

AFTER THE GATE IS SHORTED TO VOUT

•The pass FET stops conducting, and the current in LPARASITIC charges the pass FET capacitance across the FET.

Input Supply Surge During Test

Key TVS Specifications

Part Number (Uni)	Part Number (Bi)	Marking		Stand off Voltage V-	ff Voltage V _{en} ^e (Volts) @ I _T		Current I _T	Clamping voltage v _c @ 1	Peak Pulse Current I	Reverse Leakage I _R @ V-	Agency Approval	
(Only		UNI	BI	(Volts)	MIN	MAX	(mÅ)	(V) ^{pp}	(A)	(μ A)	® /	
SMDJ5.0A	SMDJ5.0CA	RDE	DDE	5.0	6.40	7.00	10	9.2	326.1	800	Х	

- 1. Ensure VBR is equal to or above max DC operating level
- 2. Ensure VC(max) at circuit breaker setpoint is less than the pass MOSFET & hot swap controller voltage ratings
- 3. Higher power rating TVS devices have a sharper knee characteristic
- Note: PPP = VC(max)*IPP

Recommended TVS components: 12V rail: Littelfuse 5.0SMDJ15A ±48V rail: Littelfuse 5.0SMDJ60A

Causes for FET damage

Possible Causes

- Improper Power Limit Setting or FET Selection.
- Start with 50% derating for desired SOA time
- Improper Timing Capacitor Selection
- Set timer to be 20% below desired SOA timeout
- Improper Clamping of input/output Voltage
- Excessive FET temperature (SOA is for TC=25C)
- Check RDSON and Package, RthJC
- Monitor FET temperature with remote Diode(LM25066)

Building Blocks for your Design

Load Switch & eFuse

- Power savings and simplify power sequencing
- Protects against inrush current with integrated soft start

- Protects against over-voltage, over-current and inrush events.
- Saves board space •
- Increases reliability UL/IEC recognized

Smart High-side Switches

- Increases short-circuit reliability with ٠ selectable current limit
- Improves diagnostics with high accuracy ٠ current sensing.

Signal Chain

Signal Switches

- Resolves constrained I/O and address conflict
- Improves signal integrity ٠

1²C I²C Solutions

- Isolates signals & simplifies board routing
- Low-power/high-speed technology ٠
- Low-noise audio and THD performance ٠

E

Voltage Level Translators

Bridges I/O voltage domains between MCU/MPU and peripherals with:

- Low voltage support (down to 0.8V)
- Compact packaging

Circuit Protection

High Performance TVS Diodes

- Protects system from damaging • external transients (ESD, EFT, Surge)
- Protects high speed interfaces and sensitive ٠ end equipment

Integrated ESD Protection

- All-in-one protection for many popular interfaces like USB and HDMI
 - ESD, EMI, Current Limit Switch, OVP
- USB Type-C Short-to-VBUS protection for ٠ CC/SBU

Automotive ESD Protection

- AEC-Q100, AEC-Q101 •
- Short-to-Battery/Ground •
- **Over Current Protection** ٠

Load Switch, eFuse & Smart High-Side Switch

Load Switch, eFuse & Smart High-Side Switch

Load Switches

Power Distribution & Savings

Benefits

- Extends battery life
- Simplifies power sequencing
- Mitigates inrush current damage
- Saves space & reduces solution size

Parameters

- **Ron:** 4 435 mΩ
- Vin: 0.65 6.0 V
- Imax: up to15 A
- Size: down to 0.64 mm²
- Package: WCSP, SOT-23, SON, QFN

Applications

eFuses Power Protection

Benefits

- Protects against under/over-voltage, over-current, and inrush events
- Maximizes equipment uptime & reduces maintenance costs
- Prevents failure during hot-plugging, hot-swapping & transient events
- Faster time to market UL recognized

Parameters

- **Ron:** 3 150 mΩ
- Vin: 2.5 55 V
- Imax: up to 12 A
- Size: down to 9 mm²
- Package: SON, QFN, SOIC, TSSOP

Applications

Smart High-Side Switches Diagnostics & Protection

Benefits

- Increased reliability against short-circuit
- Accurate, real-time load diagnostics
- Robust solutions withstands automotive requirements – AEC-Q100/ISO

Parameters

- **Ron**: $4 m\Omega 1 \Omega$
- Vin: 3 40 V
- Imax: up to 90 A
- Size: down to 32 mm²
- Package: HTSSOP (PWP)

Applications

www.ti.com/HighSideSwitch

Load Switch Overview

- Extend battery life by reducing standby leakage current. Turn off unused subsystems w/load switches: WiFi/BT, LCD, SD Card
- Save space and reduce solution size by integrating discrete circuitry into a load switch (2+ FETs w/Resistors & Capacitors)
- Simplify power sequencing by implementing point of load control with load switches. Power on/off each rail with GPIO
- Mitigate inrush current damage to the system with integrated "Soft Start" slew rate /rise time control.

Load Switch	Features
TPS22975	5.7V, 6A, 16m Ω , Adjustable Soft Start/ Rise Time (CT), Quick Output Discharge (QOD), Thermal Shutdown, QFN-8 pkg (0.5mm pitch)
TPS22990	5.5V, 10A, 3.9m Ω , Adjustable Soft Start/ Rise Time (CT), Quick Output Discharge (QOD), Integrated Power Good (PG), QFN-10
TPS22918	5.5V, 2A, 52m Ω , Adj. Soft Start/ Rise Time (CT), Configurable Quick Output Discharge (QOD), leaded SOT23-6pin, AEC-Q100 Available
TPS22915	5.5V, 2A, $38m\Omega$, Fixed Soft Start/ Rise Time, Optional Quick Output Discharge (QOD), 0.78mm x 0.78mm WCSP-4 (0.4mm pitch)
TPS22976	5.7V, 6A, 2-channel, 16m Ω , Adjustable Soft Start/ Rise Time per channel (CT1 & CT2), QOD, Thermal Shutdown, QFN-14 package

Replace these 7+ components...

🔱 Texas Instruments

30

Find more solutions at www.ti.com/loadswitch

What Is A Load Switch?

Load switches are electronic relays used to turn on/off power supply rails.

eFuse Overview

- Integrated FET & current sense an active circuit protection device that commonly replaces fuses and Polyfuse/PTC
- Prevents failure during hot-plug/swap by protecting against under/over-voltage, over-current, and inrush events
- Save Space and reduced solution size by integrating discrete protection circuitry
- Faster Time to Market and increased reliability through UL/IEC recognition

eFuse	Features
TPS2660x	60V, 2A, 150m Ω , ILIM,CT pin, RCB, ISNS, RPP,OVP HTSSOP
TPS25940/2/4	18V, 5.2A, 42m Ω , ILIM, CT pin, RCB, ISNS, OVP, QFN
TPS25921A/L	18V, 1.6A, 87m Ω , ILIM, CT pin, OVP, SOIC
TPS25925x/6x	18V, 5A, 30m Ω , ILIM, CT pin, OVC, SON
TPS25923x/4x/7x	18V, 5A, 28mΩ, ILIM, CT pin, OVC,BFET, SON

PTC eFuse Fuse × Broken ✓ Auto-retry: After Fault: ✓ Auto-retry after fault latch off × R_{ON} ✓ Not × Must be **Reliability:** increases damaged replaced after fault by fault × Slow trip Slow trip ✓ Fast trip Time to trip: (s/ms) (ms) (<1.5 us) × Needs Current limit × ✓ Up to + 2% time to depends on current limit Accuracy: ambient heat up accuracy and melt temp.

Highly Integrated Protection Features

Find more solutions at <u>www.ti.com/efuse</u>

What Is An eFuse?

eFuse

An active circuit protection device with an integrated FET to control load current

eFuse Features

Adjustable Current Limit, Inrush		✓ More flexibility in System design
Short Circuit protection		✓ Very fast (<200nS)Robust protection of system during short circuit situations
Over & Under Voltage protection		 Programmable OVP & UVLO help eliminates supervisory circuits
Reverse Current & I/P Voltage Protection		 ✓ Protects against miswiring {Reverse polarity i/P} ✓ Reserves holdup capacitor charge during power failure (Last Gasp) ✓ Addresses Power Muxing system challenges
Status output pins		 ✓ PG signal provides sequencing in the application ✓ Fault intelligence provided to the micro controller etc ✓ Real Time Analog Load current monitor

eFuse vs. Fuse vs. PTC

	Fuse	РТС	eFuse		
			TPS25940		
After Fault:	× Broken after fault	 ✓ Auto-retry 	 Auto-retry; latch off 		
Reliability:	Must be replaced	 R_{ON} increases after fault 	 Not damaged by fault 		
Time to trip:	Slow trip (s/ms)	Slow trip (ms)	✓ Fast trip (<1.5 us)		
Accuracy:	 Needs time to heat up and melt 	 Current limit depends on ambient temperature 	 ✓ Up to <u>+</u> 2% current limit accuracy 		

For More Information On eFuses & Load Switches:

Please visit: ti.com/efuse & ti.com/loadswitch

App Notes

- Basics of Load Switch
- <u>Fundamentals of On-Resistance in Load</u> <u>Switches</u>
- <u>Achieve 20A Circuit Protection and space</u> <u>Efficiency using Paralleled eFuses</u>
- <u>The TPS2660simplifies Surge and Power Fail</u> <u>Protection Circuit in PLC Systems</u>
- <u>Soft Startup of Brushless DC Fan with</u> <u>TPS25924 eFuses</u>

System Protection & Management Options

ORing Control (Linear v. Hysteretic) Linear Control

- Regulates V_{AC} to 10 mV
- Reverse current less likely
- May not like reactive loads

Hysteretic Control

- FET on if $V_{AC} > 10 \text{ mV}$
- FET off if $V_{AC} < 3 \text{ mV}$
- Fast off if V_{AC} goes negative
- Less sensitive to reactive loads
- Suceptible to light load oscillation

Hotswap/ORing Controller Combos

Positive ORing Controller Device Comparison

PART	Voperating	Package	AUX Input	FET Test	Control Type	I _{GATE} uA	V _{TH} FAST SHUTOFF mV
LM5051	-6 to 100	SOIC8	No	Yes	Linear	280 - 950	-45
LM5050-1	5 to 75	TSOT22 6 Thin	Yes (VS)	No	Linear	12 - 41	-28
LM5050-2	6 to 75	130123-0 11111	No	Yes			
TPS2410		TSSOP14	Yes (VDD) No	Yes	Linear	290	Adjustable -3 to -200
TPS2411	0.8 – 16.5			Yes	Hysteretic		
TPS2412		TSSOP8		No	Linear		
TPS2413					Hysteretic		
TPS2419					Hysteretic		

Thank you.

