PLC Temperature Sensing Input Module Introduction

PLC 溫度感測輸入模組導論

TI Analog FAE – Edward Lee Edward.lee@ti.com

Agenda

- Overview
 - Where/how are temperature sensing used in PLC?
 - What are the different types of sensor for temperature sensing?
- Designing Thermocouple
 - Theory of Operation
 - Design Examples
- Designing RTD
 - Theory of Operation
 - Design Examples

Overview Where/how are temperature sensing used in PLC? What are the different types of sensor for temperature sensing?

Industrial Automation Overview

4

Introduction to PLCs

What is a **PLC**?

- PLC = <u>P</u>rogrammable <u>L</u>ogic <u>C</u>ontroller
- Control system for automated industrial processes

5

Where do I find Temperature Sensing in PLCs?

Analog Input Module (Temperature Transducer) EERD

Key Signal Chain Specs

- Input impedance (>1 MΩ)
- High voltage input (up to ±10 V)
- Group- or channel-isolated
- Universal input (TC, RTD, ±10 V, 4-20 mA)
- Update rate per channel
- Common-mode range
- System size

Important Terms

Channel-to-channel isolated – each input is ground-isolated from each other input to minimize ground loops between channels \rightarrow requires one ADC per channel

Group-isolated – several inputs share a ground but are generally separated from earth ground \rightarrow requires one ADC per group

Different types of temperature sensor

	THERMOCOUPLE	RESISTANCE TEMPERATURE DETECTOR (RTD)	THERMISTOR	SEMICONDUCTOR TEMPERATURE SENSOR IC
Range	-270°C to 2000°C	–200°C to 850°C	-50°C to 300°C	–55°C to 200°C
Changing Physical Characteristic	Voltage	Resistance	Resistance	Voltage or current
Excitation	Self-powered	Current excitation	Current excitation	Power Supply (µA)
Cost	Low	High	Low to moderate	Low
Response	Medium to fast	Medium	Medium to fast	Medium to fast
Accuracy	Less	Best	Good	Better
Repeatability	Reasonable	Excellent	Fair to Good	Good to excellent
Ruggedness	Very high (Can withstand high shock and vibration)	Less	High	Medium
Special Requirements	Amplification, Filtering, Cold junction compensation, Linearization	Lead Compensation, Filtering	Linearization	Power supply, Self- contained
Sensitivity at 20°C	Low (40 µV per °C for K- Type)	Medium	Very high	High (Typically 10 mV/°C)
Self-Heating	No	Very low to low	High	Very low to low
Lead Wire Resistance	Not a problem	Problematic	Not a problem	Not a problem
Interchangeability	Good	Excellent	Poor to fair	Better
Long Term Stability	Poor	Stable over long period; Typically Less than 0.1°C per year	Poor	Good
Noise Susceptibility	High	Medium	Low	Medium
Linearity	Fair	Good	Poor (Logarithmic)	Good
Size	Small to large	Medium to small	Small to medium	Small to medium but limited package choices
				0.5'C Digital Out Temp Sensor

Different types of temperature sensor

Designing Thermocouple *Theory of Operation & Design Examples*

Thermocouple Basics I

Seeback Effect

Any conductor that is subjected to a thermal gradient will generate a voltage between its ends.

- · Consists of two dissimilar metal alloys
- Most common types:
 - Chromel-Alumel (Type K)
 - Iron-Constantan (Type J)
 - Copper-Constantan (Type T)

Thermocouple Basics II

Advantages

- → Wide temperature range (-260°C to +2000°C) Only contact temperature measurement device for T >850°C
- Self-powered
- → Very fast response, fractions of sec
- → Simple and durable in construction

Inexpensive

➔ Wide variety of physical forms

Disadvantages

- Thermocouple voltage non-linear with temperature
- → Low measurement voltages (≤ 60mV)
- ➔ Low accuracy: ±2°C
- Least stable and sensitive
- Requires a known junction temperature

Type-K Thermocouple

- Max. Temperature Range: -260°C to 1370°C
- Thermocouple Voltage V_{TC} : -6.458mV to 54.886mV

Need for Isolation

Choosing the PGA Gain

• Thermocouple Voltage:

V_{TC MAX} = 54.886mV

- Max. Gain: $V_{REF}/V_{TC MAX} = 2.048V / 54.886mV = 37.3 V/V$
- Next smaller PGA Gain: 32 V/V

Biasing the Thermocouple – Option I

- Biasing necessary to meet PGA common-mode voltage requirement
- Bias resistor value: Compromise between self-heating (bias current) and noise pickup. Typ. $500k\Omega 10M\Omega$
- Thermocouple can have lead resistance of up to 10kΩ per lead.
 Bias current causes additional offset error.

Biasing the Thermocouple – Option II

(*) V_{BIAS} not available in ADS1220

TEXAS INSTRUMENTS

- V_{BIAS} = AVDD/2 = 1.65V
- · No error due to additional bias current
- Alternatively VREFOUT can be used for biasing instead of V_{BIAS}

Input Filter

- Noise and antialiasing filter
- Series resistor serves as overvoltage protection by limiting the input current $f_{-3dB, DIE} = \frac{1}{2} \frac{1}{1} \frac{f_{-3dB, CM}}{1} = \frac{1}{2} \frac{1}{1} \frac{1}{$

Input Filter - Guidelines

- $C_{DIF} \ge 10 \cdot C_{CM}$ Corner frequency of differential filter lower than common-mode filter
- Use of high quality caps recommended, otherwise corner frequency changes with voltage and temperature
- Limit R_F to ≤10kΩ otherwise additional offset voltage due to input currents of ADC
- Chose R_F with adequate power rating to withstand overvoltage condition
- Biasing should be placed in front of filter so bias current does not flow through R_F which would create additional offset error
- Large filter increases settling time in MUX applications

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Common-mode filter only

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Common-mode filter only

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Mismatch in common-mode capacitors

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Mismatch in common-mode capacitors

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Adding differential mode filter

Simulation explaining why $C_{DIF} \ge 10 \cdot C_{CM}$ Adding differential mode filter

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Increase differential mode filter capacitor

Simulation explaining why C_{DIF} ≥ 10·C_{CM} Increase differential mode filter capacitor

Aliasing I

Aliasing II

Aliasing III

- Knock down signals at f_{MOD} so they don't alias back into the band of interest
- Set $f_C \ge 10 \cdot f_{Data}$ so that droop of external filter does not effect the signal

OPEN SENSOR DETECTION

Open Sensor Detection – Option la

- Use of pull-up/down resistors
- · Detection continuosly 'on the fly'
- Additional errors due to biasing current possible
- Open sensor condition will saturate PGA

Open Sensor Detection – Option Ib

- $V_{TC MAX} \le V_{RB3} \le FS$
- Open sensor condition does not saturate PGA
- Improves settling in MUX applications

Open Sensor Detection – Option II

- Use of BOCS (Burnout Current Sources)
- Use a separate diagnostic cycle to turn BOCS on otherwise the currents will cause additional offset errors

Open Sensor Detection – Option III

- Use of pull-up resistor together with V_{BIAS}
- Detection 'on the fly' but again potential issue of bias current causing additional errors

Cold Junction Compensation

CJC (Cold Junction Compensation)

- thermocouple tip and the terminals (cold junction)
- Therefore the temperature of the cold junction has to be known Texas Instruments
CJC Algorithm

- CJC not automatically performed in our ADCs. Has to be implemented in the MCU
- Algorithm:
 - 1. Measure the thermocouple voltage, V_{TC}
 - 2. Measure the temperature of the cold junction, T_{CJ}
 - 3. Convert the cold-junction temperature into an equivalent thermoelectric voltage, V_{CJ} , using the tables or equations provided by NIST.
 - 4. Add V_{TC} and V_{CJ} and translate the summation back into a thermocouple temperature using the NIST tables or equations again.

CJC Example

	MAXIMUM TEMPERATURE RANGE Thermocouple Grade – 328 to 2282°F – 200 to 1250°C Extension Grade)+)-	The Gra	rmoco de	uple	Re Re	evis efer	ed ⁻ enc	The e Ta	rmo able	oco es	uple	9					
	3:0 (v\$2.5 C V R T R	to 392 to 200° IMITS (vhichew tandar 2°C or pecial: OMME lean Ox acuum ange; N EMPER EFERE	2°F C C F ERF er is grid: 2.2°C 2.0% B 1.1°C (NTS, B kidizing or Redu Most Po RATURI ENCE J	Cor Cor 0.7 Selow 0' or 0.4% ARE W and Ind ucing; V pular C E IN DE UNCTIO	5% Ab °C /IRE EN ert, Lim Vide Te calibrati EGREE ON AT	ove 0°0 NVIROI ited Us impera on S °C 0°C	NMENT e in ture	: Ex Gr	tensio ade	Nicke Nicke	el-Ch vs el-Alı	romi umin	um um	0+ 0-	Re Ta N. Re IT	eferer ibles I.S.T. onog evise S-90	Pice raph d to	E 175				Z	7	
																							2	
°C	0	1	2	3	4	5	6	7	8	9	10	°C	0	1	2	3	4	5	6	7	8	9	10	°C
0	0.000	0.039	0.079	0.119	0.158	0.198	0.238	0.277	0.317	0.357	0.397	1100	45.119	45.157	45.194	45.232	45.270	45.308	45.346	45.383	45.421	45.459	45.497	1100
10	0.397	0.437	0.477	0.517	0.557	0.597	0.637	0.677	0./18	0.758	0.798	1110	45.497	45.534	45.572	45.610	45.647	45.685	45.723	45.760	45.798	45.836	45.873	1110
20	0.798	1.244	0.879	0.919	0.960	1.000	1.041	1.081	1.122	1.163	1.203	1120	45.8/3	45.911	45.948	45.986	46.024	46.061	46.099	40.130	46.1/4	46.211	46.249	1120
40	1.203	1.244	1.285	1.320	1.300	1.407	1.448	1.489	1.530	1.002	2.023	1140	46.249	46.660	46.607	46.361	46.398	46,900	46.473	46.894	46.021	40.080	46.023	1140

• $T_{CJ} = 25^{\circ}C$

• V_{TC} = 45.809mV • T_{TC} = ?

Resolution **ERROR ANALYSIS**

Accuracy

Error Analysis using ADS1248

ADS1248	ТҮР	Unit
Offset	15	uV
Offset Drift	0.01	uV/°C
Gain Error	0.005	%
Gain Error Drift	3	ppm/°C
INL	6	ppm
Reference Voltage	2.048	V
Reference Voltage Initial Accuracy	0.015	%
Reference Drift	6	ppm/°C
PGA Gain	32	V/V
rms Noise @ 20SPS/Gain=32	0.12	uV

Initial ADC Errors at $T_A = 25^{\circ}C$

Errors due to 'Error Source x' (ESx) at max. thermocouple temperature ($V_{TC MAX} = 54.886mV @ 1370^{\circ}C$)

ES1 Offset Voltage	15uV
ES2 INL	(INL · FS _{ADC}) / Gain = (INL · 2·V _{REF}) / Gain = (6ppm · 2·2.048V) / 32 = 0.77uV
ES3 Gain Error	(GE · V _{TC MAX}) = 0.005% · 54.886mV = 2.74uV
ES4 Reference Accuracy	0.015% · 54.886mV = 8.23uV
Overall ADC Error @ T _A =25°C	$\sqrt{ES1^2 + ES2^2 + ES3^2 + ES4^2} = 17.3 \text{uV}$
	(*) Errors due to bias or ADC input currents and external filter components have been neglected

Overall ADC Error at T_A = 25^{\circ}C

- Overall Voltage Error @ T_A=25°C: 17.3uV
- Type-K Thermocouple Sensitivity:
- Temperature Error:

40uV/°C

 $17.3 \text{uV} / 40 \text{uV}^{\circ}\text{C} = 0.43^{\circ}\text{C}$

- This is the error introduced by the ADC only. It can typically be calibrated using offset and gain calibration.
- Other errors like
 - Accuracy of the CJC measurement
 - Offset voltages due to bias and input leakage currents
 - Accuracy of the thermocouple itself
 - Non-linearity of thermocouple

have to be taken into account as well in order to determine the overall system accuracy.

ADC Errors due to Temperature Drift

- Ambient Temperature Range: -40°C to 85°C
- Max. Deviation from 25°C: 65°C

ES1 Offset Voltage Drift	0.01uV/°C · 65°C = 0.65uV
ES2 Gain Error Drift	3ppm/°C · 54.886mV · 65°C = 10.7uV
ES3 Reference Drift	6ppm/°C · 54.886mV · 65°C = 21.4uV

Overall Drift Error	$\sqrt{ES1^2 + ES2^2 + ES3^2} = 23.9 \mathrm{uV}$	
---------------------	---	--

Errors due to Temperature Drift

- Overall Temperature Drift Error:
- Type-K Thermocouple Sensitivity:
- Temperature Error:

23.9uV 40uV/°C 23.9uV / 40uV/°C = 0.59°C

 Chopping the inputs can eliminate offset drift errors. You need to make sure the input signal is settled before taking a reading using the swapped inputs.

Achievable Resolution with ADS1248

DATA	PGA SETTING										
(SPS)	1	2	4	8	16	32	64	128			
5	1.1 (4.99)	0.68 (3.8)	0.37 (1.9)	0.19 (0.98)	0.1 (0.44)	0.07 (0.31)	0.05 (0.27)	0.05 (0.21)			
10	1.53 (8.82)	0.82 (3.71)	0.5 (2.69)	0.27 (1.33)	0.15 (0.67)	0.08 (0.5)	0.06 (0.36)	0.07 (0.34)			
20	2.32 (13.37)	1.23 (6.69)	0.71 (3.83)	0.34 (1.9)	0.18 (1.01)	0.12 (0.71)	0.10 (0.51)	0.09 (0.54)			

Table 1. Noise in μV_{RMS} and (μV_{PP}) at AVDD = 5V, AVSS = 0V, and External Reference = 2.5V

• LSB size:

$$\frac{2 \times V_{\text{REF}}}{2^{24} \times \text{Gain}} = \frac{2 \times 2.048 \,\text{V}}{2^{24} \times 32} = 7.6 \text{nV}$$

- Input referrerd Noise:
- Type-K Thermocouple Sensitivity:
- Temperature Resolution per Code:
- Noise Free Temperature Resolution:

0.71uV_{pp} 40uV/°C

 $7.6 \text{nV} / 40 \text{uV}^{\circ}\text{C} = 0.0002^{\circ}\text{C}$

 $0.71 \text{uV}_{\text{pp}} / 40 \text{uV}/^{\circ}\text{C} = 0.018^{\circ}\text{C}$

High-End PLC Input Modules, Data Loggers

ADS1262 ADS1263

ADS1248

24-bit, 7-Ch, 2kSPS Low Noise ADC | Reference | Oscillator | PGA | Temp Sensor | Current Sources

Features

- Flexible Device Family:
 - o Inputs: 7 Single-Ended | 4 Differential
 - Supply Range: ±2.5V (Bipolar) / 5V (Unipolar)
 - Variable Output Data Rate: **5SPS to 2kSPS**
- 50/60Hz Simultaneous Rejection Mode (20SPS)
- On-Chip Integration:
 - Low Drift Reference: 2.048V
 - Low Noise PGA: 80nV @ G = 128
 - Dual, Matched IDACs: 50–1500µA
 - Oscillator | Temp Sensor | Burnout Detect
 - o GPIO's: 8

Applications

- Temperature Measurement: RTDs | Thermocouples | Thermistors
- Flow/Pressure Measurement
- Industrial Process Control

Benefits

- With all of the necessary parts on board coupled with no sacrifice in performance, the ADS1248 is the ultimate temperature sensor measurement solution
- Very flexible analog front end enables an easy design path for developers and allows for integration into a wide range of applications
- A high level of integration eliminates the need for several discrete components, reducing board space as well as BOM costs
- Large family of sensor-ready products provides a scalable solution

ADS124S06 / ADS124S08

24-bit, 4 kSPS, 6/12-Ch ΔΣ ADC for Precision Sensor Measurement

Features				
Resolution	24	Low-Noise PGA		
# of Ch	6 / 12	(19 nV @ G=128)		
Sample Rate	4 kSPS			
Interface	SPI	Low-Drift Reference		
AVDD	2.7 V to 5.25 V ±2.5 V	(10 ppm/°C max)		
DVDD	2.7 V to 3.6 V	2x Current Sources		
Input Type	Single-Ended Differential	(IDACs)		
Temperature Range	-50°C to +125°C	High Accuracy		
Package	5 mm x 5 mm (QFN-32 / TQFP-32)	Oscillator (1.5%)		
Applicatio	115			

- Temperature Measurement: RTDs | Thermocouples | Thermistors
- Pressure Sensors
- Electro-Magnetic Flow Meters
- Universal PLC / DCS Analog Input Modules
- Weigh Scales

Benefits

- Low-noise PGA enables precision measurements for the smallest input signals
- Low-drift integrated voltage reference reduces system cost and size while still offering high precision and accuracy
- Dual, matched IDACs can used for RTD biasing, reducing BOM size and solution cost
- High-accuracy oscillator enables better 50/60 Hz rejection than competitors for noisy industrial environments

Device	# of Ch	Resolution	Device	# of Ch	Resolution	
ADS124S08	12		ADS114S08	12	40	
 ADS124S06	6	24	ADS114S06	6	16	
				IEXAS	INSTRUMEN	ГS

48

ADS124S06/8 – Improved Features

24-bit, 6/12-Ch, 4kSPS Delta-Sigma ADC for Precision Sensor Measurement

Better Performance vs. ADS1248	 30% lower power consumption (280µA w/ PGA bypassed & external reference) 20% lower noise (19nV_{RMS} @ G = 128, 2.5SPS) 60% smaller package (5x5mm QFN & 7x7mm TQFP) 1.5% accurate oscillator Guaranteed input leakage current of 2nA over temperature Single-ended input measurement capability @ G=1 Wider temperature range: -50°C to +125°C
Improved Design vs. ADS1248	 Additional data rate options: 2.5 16.6 50 60 4000 Increased reference voltage: 2.5V Extended reference input voltage range → now includes AVDD Improved IDAC performance: compliance voltage, noise, drift, matching, etc. Expanded feature set: Reference Detect PGA Out-of-Range Detection Low-Side Switch Simplified SPI interface Optional 8-bit CRC

ADS1120 / ADS1220

Low Power, 16/24-bit, 2 kSPS, 4-Ch ΔΣ ADC for Small Signal Sensors

Features					
Resolution	16 / 24	Integration: PGA_VREE			
# of Ch	4	OSC. Temp Sensor			
Sample Rate	2 kSPS				
Interface	SPI	2x Current Sources			
AVDD	2.3 V to 5.5 V ±2.5 V	(IDACs)			
DVDD	2.3 V to 5.5 V	Lew Side Bridge Switch			
Input Type	Single-Ended Differential	Low-Side Bridge Switch			
Temperature Range	-40°C to +125°C	2x VREF Input &			
Package	3.5 x 3.5 mm (QFN-16) 5 x 4.4 mm (TSSOP-16)				

- Temperature Measurement: RTDs | Thermocouples | Thermistors
- Heat Meters
- 4-20mA Loop-Powered Transmitters
- Pressure / Bridge Sensors
- Electro-Magnetic Flow Meters
- Portable Instrumentation

Benefits

- Lots of integrated features provide a complete analog front end for DC sensing applications that reduce system cost and size
- Dual, matched IDACs can used for RTD biasing, reducing BOM size and solution cost
- Low-side switch saves power when measuring resistive bridges by breaking current path
- Dual VREF inputs along with CLKIN pin enable maximum design flexibility when external components are required

ADS112C04 / ADS122C04

16/24-bit, 2 kSPS, 4-Ch Sensor Measurement ΔΣ ADC with 2-Wire I2C Interface

Features					
Resolution	16 / 24				
# of Ch	4	2-Wire I2C Interface			
Sample Rate	2 kSPS				
Interface	I2C	2x Current Sources			
AVDD	2.3 V to 5.5 V	(IDACs)			
DVDD	2.3 V to 5.5 V				
Input Type	Single-Ended Differential	Integration: PGA, VREF, OSC, Temp Sensor			
Temperature Range	-40°C to +125°C	Conversion Counter &			
Package	3 x 3 mm (QFN-16)	CRC			
	5 x 4.4 mm (TSSOP-16)				

- Temperature Measurement: RTDs | Thermocouples | Thermistors
- Heat Meters
- 4-20mA Loop-Powered Transmitters
- Pressure / Bridge Sensors
- Portable Instrumentation

Benefits

- Simple, 2-wire I²C interface requires fewer isolation lines compared to SPI interface
- Dual, matched IDACs can used for RTD biasing, reducing BOM size and solution cost
- Lots of integrated features provide a complete analog front end for DC sensing applications that reduce system cost and size
- Conversion counter & CRC provide device health feedback to help maintain reliable system operation

ADS1260 / ADS1261

24-bit, 40 kSPS, 5/10-Ch ΔΣ ADC w/ Low Noise in 5 mm x 5 mm QFN

Features					
Resolution	24				
# of Ch	5 / 10	(6 nV _{pue} @ G=128, 2.5 SPS)			
Sample Rate	40 kSPS				
Interface	SPI	Small 5 mm x 5 mm			
AVDD	4.75 V to 5.25 V ±2.5 V	QFN Package			
DVDD	2.7 V to 5.25 V	AC Excitation			
Input Type	Single-Ended Differential	(ADS1261 only)			
Temperature Range	-40°C to +125°C	Monitoring &			
Package	5 mm x 5 mm (QFN-32)	Diagnostics			
Applications					

- PLC Analog Input Modules:
 4-20 mA | 10 V | RTD | Thermocouple
- DAQ and Dynamic Strain Analyzers
- Gas Chromatographs / Flow Meters
- Weigh Scale / Resistive Bridge Measurements

Benefits

- Low-noise PGA enables precision measurements for the smallest input signals
- Small 5x5 mm QFN package reduces system footprint while still providing a highly-integrated, high-performance solution
- AC-excitation drive for H-bridge chopping helps remove offset and offset drift errors to improve system accuracy
- Monitoring & diagnostic features help improve system reliability

52

ADS1262 / ADS1263

32-bit, 38 kSPS, 10-Ch, Best-in-Class Industrial $\Delta\Sigma$ ADC

Features Low Noise: 7 nV_{RMS} Resolution 32 Low Offset Drift: 1 nV/°C # of Ch 10 Highly-Linear: 3 ppm Sample Rate 38 kSPS **Highly-Integrated:** SPI Interface PGA, VREF, OSC, IDACs 4.75 V to 5.25 V AVDD +2.5 V 1.8 V to 3.6 V DVDD Fault Diagnostics & Monitoring Single-Ended Input Type Differential Temperature -40°C to +125°C Auxiliary 24-bit ADC Range (ADS1263 only) 9.7 mm x 4.4 mm Package (TSSOP-28) **Applications**

- PLC Analog Input Modules
- Differential Pressure Flow Meters
- High Precision Weigh Scales
- Gas Chromatography
- Analytical Equipment

Benefits

- **High-resolution, low-drift** architecture provides the industry's best performing ADC
- A high level of integration reduces necessary external components saving cost & space while reducing complexity
- Fault detection improves reliability in industrial systems
- Use ADS1263's auxiliary, 24-bit signal path for temp monitoring in precision applications such as flow meters & weigh scales

ADS125H01** / ADS125H02

20

Industry's First ±20 V Input, 24-bit, 40kSPS, 1-/2-Ch ΔΣ ADC with High Input Impedance

Features			Benefits
Resolution # of Ch	24 1 / 2	Wide FS Input Signal Range: ±20 mV to ±20 V	 Programmable input signal range accepts high-voltage inputs and low-voltage inputs Low noise PGA + high-resolution 24-bit ADC suitable for direct connection to bridge / RTD / thermocouple sensors Small form factor, single-chip solution is >50% smaller than discrete devices, reducing PCB area and simplifying design 1-GΩ input impedance eliminates measurement errors caused by sensor loading
Interface CM Range HV AVDD	40 KSP3 SPI ±15.5 V ±18 V / 0 V to 36 V	Ultra-Low Noise: 45 nV _{RMS} (20 SPS)	
AVDD DVDD	4.75 V to 5.25 V 2.7 V to 5.25 V	5 mm x 5 mm QFN	
PGA Gains Input Type	0.125 to 128 (binary) Single-Ended Differential	High Input Impedance: 1 GΩ	
Temp Range -40°C to +125°C Package 5 mm x 5 mm (QFN-32) Package 10 V / 4-20 mA Thermocouple / RTD Universal Input High-Voltage, Precision T&M Battery Test Equipment			AINO AINO AINI AINCOM AINCOM AINCOM AINCOM AINCOM AINCOM ADS125H01 ADS125H02 PGA Rail Detection ADS125H02 PGA Rail Detection Check CRC ADS125H02 PGA Rail Detection Check CRC ADS125H02 PGA Rail Detection Check CRC ADS125H02 POWER Supplies CLKIN CS1 CS2 DIN RESET DOUT/DRDY Check CRC DRDY CLKIN

ADS125H0x – Platform Solution

Industry's First ±20 V Input, 24-bit, 40kSPS, 1-/2-Ch ΔΣ ADC with High Input Impedance

ADS125H0x – Applications

Industry's First ±20 V Input, 24-bit, 40kSPS, 1-/2-Ch ΔΣ ADC with High Input Impedance

PLC Single-ch Module (Consolidation)

High CMV Multi-ch Thermocouple

High-Voltage Universal Input Module

High-Side Precision Sensing

Designing RTD *Theory of Operation & Design Examples*

RTD <u>R</u>esistance <u>T</u>emperature <u>D</u>etector

- Principle of Operation:
 Predictable resistance change
- Mostly made of Platinum
 - linear resistance-temperature relationship
 - chemical inertness
- Pt100 most common device used in industry
 - Nominal Resistance R = $100\Omega @ 0^{\circ}C$
 - Sensitivity = $0.385\Omega/^{\circ}C$ (typ.)
- Slowly replacing thermocouples in many industrial applications below 600°C.

Advantages

roov otability and repeatability

- ➔ High accuracy: < ±1°C</p>
- Best stability over time
- → Temperature range: -200°C to +850°C
- Good linearity

➔ Low sensitivity

What is an RTD made of?

- Platinum (Pt)
- Nickel (Ni)
- Copper (Cu)
- Have relatively linear change in resistance over temp
- Have high resistivity allowing for smaller dimensions
- Either Wire-Wound or Thin-Film

Figure 1. The coiled element sensor, made by inserting the helical sensing wires into a packed powderfilled insulating mandrel, provides a strain-free sensing element.

MetalResistivity
(Ohm/CMF)Gold (Au)13Silver (Ag)8.8Copper (Cu)9.26Platinum (Pt)59Tungsten (W)30Nickel (Ni)36

Figure 2. The thin film sensing element is made by depositing a thin layer of platinum in a resistance pattern on a ceramic substrate. A glassy layer is applied for seal and protection.

RTD Resistance vs. Temperature

IEC60751 Constants:

$$R_0 = 100\Omega$$

A = 3.9083 \cdot 10^{-3}
B = -5.775 \cdot 10^{-7}
C = -4.183 \cdot 10^{-12}

Different RTD Types – why do they exist? (I)

• 2-Wire RTD

- 2-Wire measurements are simplest to implement
- Good for close proximity to RTD (R_L is small)
- RTD lead resistance is included in the result
- Tradeoff:
 - Accuracy: Error = $2 \cdot R_L \cdot I_{EXC}$
 - Cost = Cheapest!

• 3-Wire RTD

- Allows for R_L cancellation and remote RTD placement
- Tradeoff:
 - Accuracy = Better
 - Cost = More expensive

Different RTD Types – why do they exist? (II)

- 4-Wire RTD
 - Kelvin Connection:

Isolates the excitation path from the sensing path

- 2 wires carry the excitation current,
- 2 wires connect to high-impedance measurement circuitry
- Useful when R_L matching becomes difficult to implement
- Tradeoff:
 - Accuracy = Most accurate
 - Cost = Most expensive

Voltage, Non-ratiometric

Voltage, Ratiometric

Current, Ratiometric

RTD EXCITATION METHODS

- Step 1: Measure V_3 to determine excitation current $(I_{EXC} = V_3/R_{REF})$
- Step 2: Measure V₂ to determine lead resistance
- Step 3: Measure V_1 to determine RTD resistance V_1

- Step 1: Measure V_3 to determine excitation current $(I_{EXC} = V_3/R_{REF})$
- Step 2: Measure V_2 to determine lead resistance

 $(R_{Lead} = V_2/I_{EXC})$

• Step 3: Measure V_1 to determine RTD resistance

- Step 1: Measure V_3 to determine excitation current $(I_{FXC} = V_3/R_{RFF})$
- Step 2: Measure V₂ to determine lead resistance
- Step 3: Measure V₁ to determine RTD resistance

 $(R_{Iead} = V_2/I_{EXC})$

- Step 1: Measure V₂ to determine lead resistance
- Step 2: Measure V₁ to determine RTD resistance

- Step 1: Measure V₂ to determine lead resistance
- Step 2: Measure V₁ to determine RTD resistance

- Step 1: Measure V₂ to determine lead resistance
- Step 2: Measure V₁ to determine RTD resistance

RTD Excitation Methods (III) Current, Ratiometric

RTD Excitation Methods (III) Current, Ratiometric

- Step 1: Measure V₁ to determine RTD resistance
- Code ~ R_{RTD}/R_{REF}

RTD Excitation Methods (III) Current, Ratiometric

RTD Excitation Methods (III) Current, Ratiometric 0.1 μF Step 1: Measure V₁ to determine RTD resistance AVDD • Code ~ R_{RTD}/R_{REF} UDAC IDAC1 AIN0 3-wire RTD 24-bit PGA Mux ΔΣ ADC R_{LEAD2} AIN1 R_{I FAD} Cancellation: $\ge R_{LEAD3}$ IDAC2 $\mathbf{I}_{\text{IDAC 1}} = \mathbf{I}_{\text{IDAC 2}} = \mathbf{I}$ $R_{LEAD1} = R_{LEAD2} = R_{LEAD3} = R_{LEAD3}$ REFP0 LIDAC1 + LIDAC2 Reference $R_{REF} \lesssim$ Mux **REFNO** $V_{IN_{+}} = I \times (R_{IEAD} + R_{RTD}) + 2I \times (R_{IEAD} + R_{REE})$ $V_{IN_{+}} = 3I \times R_{IFAD} + 2I \times R_{RFF} + I \times R_{RTD}$ AVSS $V_{IN_{-}} = I \times R_{IFAD} + 2I \times (R_{IFAD} + R_{RFF})$ $V_{INI_{-}} = 3I \times R_{IEAD} + 2I \times R_{REE}$

$$V_1 = V_{IN^+} - V_{IN^-} = I \times R_{RTD} = V_{RTD}$$

Design Example: ADS1247 3-wire RTD Measurement

Step-by-Step Example with ADS1247

- System Requirements:
 - RTD Type: 3-Wire Pt100
 - Temperature Range: -200°C to 850°C
 - Supply Voltage: AVDD = 3.3V
 - 50/60Hz Rejection
- Design Considerations:
 - Data Rate
 - IDAC magnitude
 - R_{REF}
 - Gain
 - Low-pass Filters

Selecting Data Rate

 At Data Rate = 20SPS or less, the ADS1247 offers simultaneous 50/60Hz rejection

Selecting IDAC Value

- Larger values produce larger signals better resolution! (good, right?)
- Causes for concern with large IDAC values:
 - 1. Self-heating of RTD
 - 2. IDAC compliance voltage
- Start with 250µA 1mA

Selecting R_{REF}

• Select R_{REF} such that V_{REF} is ~40% to 50% of AVDD:

$$V_{REF} = \frac{AVDD}{2} \qquad \qquad R_{REF} = \frac{V_{REF}}{2 \times I_{IDAC}}$$

- R_{REF} should be chosen with tight tolerance and low temperature drift
 - DC errors in R_{REF} directly affect the uncalibrated measurement gain error

 $AVDD=3.3V,\ I_{IDAC}\ =1mA$

• Calculation:

$$V_{REF} = \frac{3.3V}{2} = 1.65V$$
 $R_{REF} = \frac{1.65V}{2 \times 1mA} \approx 820\Omega$

Selecting Gain

- The largest gain will yield the best resolution per °C
- Choose gain such that ADC input signal is still less than V_{REF} at the max temperature
- Calculation: $R_{RTD @ 850^{\circ}C} = 390.48\Omega$ $V_{RTD @ 850^{\circ}C} = 390.48\Omega \times 1mA = 0.39048V$

$$Gain < \frac{V_{\text{REF}}}{V_{\text{RTD @ 850°C}}} = \frac{1.64 \text{ V}}{0.39048 \text{ V}} = 4.2$$

Input and Reference Filters (I)

Input and Reference Filters (II)

- Used to filter high-frequency noise from aliasing into ADC passband
- At 20 SPS, ADS1247 has -3 dB bandwidth of 14.8 Hz.
- $f_{-3dB_Dif} \approx 10 \text{ x } f_{-3dB_DR}$
- RTD input and reference filters should have *matching* cutoff frequencies
 - If noise appears on the RTD input, but not the reference, it will not be cancelled in the ratiometric configuration
 - The RTD will change resistance over temperature; use the mid-point of the temperature range to calculate input filter
 - App Note: <u>http://www.ti.com/lit/pdf/sbaa201</u>

IDAC Compliance

Input Common-Mode Voltage

DESIGN CHECKS

Check IDAC Compliance

		ADS1246, ADS1247, ADS1248			
PARAMETER	CONDITIONS	MIN TYP MAX		MAX	UNIT
CURRENT SOURCES (IDACS)					
Output current		50, 100, 250, 500, 750, 1000, 1500			μA
Voltage compliance	All currents	AVDD - 0.7			V
Initial error	All currents, each IDAC	-6	±1	6	% of FS
Initial mismatch	All currents, between IDACs		±0.15		% of FS
Temperature drift	Each IDAC	100			ppm/°C
Temperature drift matching	Between IDACs	10			ppm/°C

 \checkmark

Voltage Compliance = AVDD - 0.7V = 2.6VV_{IDAC1} = V_{REF} + V_{RTD} < 2.6V

$$\begin{split} & \mathsf{R}_{\mathsf{RTD}\,@\,850\,^\circ C} = 390.48\Omega \\ & \mathsf{V}_{\mathsf{RTD}\,@\,850\,^\circ C} = 390.48\Omega \times 1\text{mA} = 390.48\text{mV} \end{split}$$

 $V_{IDAC\,1} = 1.64\,V + 390.48 mV = 2.03\,V < 2.6\,V$

Check IDAC Compliance

		ADS1246, ADS1247, ADS1248			
PARAMETER	CONDITIONS	MIN TYP MAX		MAX	UNIT
CURRENT SOURCES (IDACS)					
Output current		50, 100, 250, 500, 750, 1000, 1500			μA
Voltage compliance	All currents	AVDD - 0.7			V
Initial error	All currents, each IDAC	-6	±1	6	% of FS
Initial mismatch	All currents, between IDACs		±0.15		% of FS
Temperature drift	Each IDAC	100			ppm/°C
Temperature drift matching	Between IDACs	10			ppm/°C

Voltage Compliance = AVDD - 0.7V = 2.6V— 0.1 μF $V_{IDAC1} = V_{REF} + V_{RTD} < 2.6V$ AVDD (+) IDAC IDAC1 $R_{RTD @ 850 \circ C} = 390.48 \Omega$ AINO $V_{\text{RTD} @ 850 \circ C} = 390.48 \Omega \times 1 \text{mA} = 390.48 \text{mV}$ 24-bit 3-wire RTD Mux PGA ΔΣ ADC R_{LEAD2} R_{F2} AIN1 ۲ C_{CM2} IDAC2 $R_{P1} = 1k\Omega$ $V_{\text{RP1}} = 1 k \Omega \times 1 m A = 1 V$ C_{CM3} REFP0 JIDAC1 + JIDAC2 Reference C_{DIF2} Mux REFN0 $V_{IDAC\,1} = 1.64\,V + 390.48 mV + 1V = 3.03\,V > 2.6\,V$ X AVSS

Check Input Common-Mode

		ADS1246, ADS1		
PARAMETER	CONDITIONS	MIN	TYP MAX	UNIT
ANALOG INPUTS				
Full-scale input voltage (V _{IN} = ADCINP – ADCINN)		±V _{RE}	V	
Common-mode input range		AVSS + 0.1V + (V _{IN})(Gain) 2	AVDD - 0.1V - (V _{IN})(Gain) 2	\vee
Differential input current			pА	
Absolute input current		See Ta		
PGA gain settings		1, 2, 4, 8, 16, 32, 64, 128		

$$V_{CM(MN)} = V_{REF} = 1.64V$$
$$V_{CM(MAX)} = V_{REF} + \frac{V_{RTD(MAX)}}{2} = 1.64V + \frac{390.48mV}{2} = 1.84V$$

$$0.1V + \frac{390.48mV \times 4}{2} \le V_{CM} \le 3.3V - 0.1V - \frac{390.48mV \times 4}{2}$$
$$881mV \le V_{CM} \le 2.32V$$

ADS1247 - Things to be Aware of

- ☑ Place bypass cap on VREFOUT pin.
- \square Turn internal V_{REF} ON, otherwise IDACs will not work.
- ☑ Check IDAC compliance is met.
- Check PGA common-mode voltage range is met.
 Single-ended measurements are NOT possible using a unipolar supply!
- Start a measurement only after the input signal has settled.
 Especially important when MUX'ing channels.
- ☑ Configure SPI interface for SPI Mode 1.
- ☑ Convert twos-complement correctly.
- Don't use² absolute IDAC value to calculate R_{RTD}.
 Otherwise measurement is not ratiometric anymore.

OPEN SENSOR DETECTION

Open Sensor Detection, Lead 1

Open Sensor Detection, Lead 2

Open Sensor Detection, Lead 3 (I)

Open Sensor Detection, Lead 3 (II)

- Option1: Measure V_{REF}
 - Reconfigure MUX1 [2:0] to measure V_{REF}
 - Detect that V_{REF} is below certain threshold.
- Option 2: REFP0 as GPIO
 - Diagnostic cycle stop conversions, set REFP0 as GPIO
 - If = high, reference is present
 - If = low, reference is absent
 **Make sure GPIO theshold is met

IDAC CHOPPING

Errors due to IDAC Mismatch

		ADS1246, ADS1247, ADS1248			
PARAMETER	CONDITIONS	MIN TYP MAX		MAX	UNIT
CURRENT SOURCES (IDACS)					
Output current		50, 100, 250, 500, 750, 1000, 1500			μA
Voltage compliance	All currents		AVDD - 0.7		V
Initial error	All currents, each IDAC	-6	±1	6	% of FS
Initial mismatch	All currents, between IDACs		±0.15		% of FS
Temperature drift	Each IDAC		100		ppm/°C
Temperature drift matching	Between IDACs		10		ppm/°C

- IDACs exhibit initial mismatch and drift mismatch
- Two potential errors:
 - Gain Error

Only one IDAC is flowing through RTD but both IDACs flow through $R_{REF.}$ Calculation assumes both IDACs are equal.

- No 100% R_{LEAD} cancellation

Improved Implementation

- Eliminates gain error due to IDAC mismatch.
- Same current that excites RTD, is flowing through R_{REF} .
- Harder to maintain IDAC compliance voltage, especially when using a 3.3V supply

3-wire RTD

 R_{LEAD3}

3.3 V

IDAC Chopping

- IDAC "Chopping"
 - Two measurements with IDACs swapped are taken and averaged
 - Improves R_{LEAD} compensation

• Note: Input filters need to settle before beginning a new conversion

+ 0.1 μF

Achievable Resolution with ADS1248

Table 1. Noise in μV_{RMS} and (μV_{PP}) at AVDD = 5V, AVSS = 0V, and External Reference = 2.5V

DATA	PGA SETTING							
RATE (SPS)	1	2	4	8	16	32	64	128
5	1.1 (4.99)	0.68 (3.8)	0.37 (1.9)	0.19 (0.98)	0.1 (0.44)	0.07 (0.31)	0.05 (0.27)	0.05 (0.21)
10	1.53 (8.82)	0.82 (3.71)	0.5 (2.69)	0.27 (1.33)	0.15 (0.67)	0.08 (0.5)	0.06 (0.36)	0.07 (0.34)
20	2.32 (13.37)	1.23 (6.69)	0.71 (3.83)	0.34 (1.9)	0.18 (1.01)	0.12 (0.71)	0.10 (0.51)	0.09 (0.54)

- LSB size:
- Input referrerd Noise:
- Pt100 Sensitivity:
- Temperature Resolution per Code:
- Noise Free Temperature Resolution:

$$\frac{2 \times V_{\text{REF}}}{2^{24} \times \text{Gain}} = \frac{2 \times 1.65 \text{V}}{2^{24} \times 4} = 49.2 \text{nV}$$

$$3.83uV_{pp}$$

 $1mA \ge 0.385\Omega/^{\circ}C = 0.385mV/^{\circ}C$
 $49.2nV / 0.385mV/^{\circ}C = 0.0001^{\circ}C$
 $3.83uV_{pp} / 0.385mV/^{\circ}C = 0.01^{\circ}C$

Supporting Collateral

- TI Precision Designs
 - <u>TIPD109</u>:Simple Thermocouple Measurement Solution Reference Design, <1°C Accurate
 - <u>TIPD120</u>: 3-wire RTD Acquisition System Accurately Measures Temperature From -200°C 850°C
 - <u>TIPD152</u>: 0°C 100°C, Hardware-Compensated Ratiometric 3-Wire RTD System Reference Design
 - <u>TIPD164</u>: Analog Input Module for Industrial Outputs and Temperature Sensors Reference Design
 - <u>TIPD193</u>:RTD to Voltage Reference Design Using Instrumentation Amplifier and Current Reference
 - <u>TIDA-00018</u>:Temperature Sensor Interface Module for Programmable Logic Controllers (PLC)
 - <u>TIDA-00168</u>: Thermocouple AFE Using RTD or Integrated Temperature Sensor for Cold Junction Compensation (CJC)
- Application note
 - <u>SBAA274</u>:A Basic Guide to Thermocouple Measurements– Joseph Wu
 - <u>SBAA275</u>: A Basic Guide to RTD Measurements Joseph Wu
 - TC and RTD Measurement Step-by-step Design Procedure October 2014 Joachim Wurker

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com