Clock Jitter TI Precision Labs –Noise in Clock and Timing Systems

Presented by Rob Rodrigues

Prepared by Dinesh Jain

Clock jitter tree

Noise

Converting RMS jitter into pk-pk & vice versa

- For non-correlated noise source, a gaussian noise model is assumed.
- Bit Error Rate (BER) is defined as the number of erroneous bits in unit time interval.
- For correlated noise source, peak-peak Jitter is linearly added.

Multiplier (Alpha)
11.996
12.723
13.412
14.069
14.698
15.301
15.883

Impact of clock jitter in serial data communication

Eye diagrams measurements

Impact of clock jitter in ADC

To find more clocks and timing technical resources and search products, visit ti.com/clocks

Clock Jitter Quiz TI Precision Labs –Noise in Clock and Timing Systems

Prepared by Dinesh Jain

- 1. True or false: Random jitter is unbounded.
- 2. True or false: Clock jitter is a long-term fluctuation of clock edges.
- 3. True or false: For un-correlated noise source, peak-peak jitter is added linearly.
- 4. True or false: An eye diagram can be used to observe clock jitter
- 5. True or false: SNR of an ADC can be limited by clock jitter

- 1. <u>True</u> or false: Random jitter is unbounded.
- 2. True or false: Clock jitter is a long-term fluctuation of clock edges.
- 3. True or false: For un-correlated noise source, peak-peak jitter is added linearly.
- 4. True or false: An eye diagram can be used to observe clock jitter
- 5. True or false: SNR of an ADC can be limited by clock jitter

- 1. <u>True</u> or false: Random jitter is unbounded.
- 2. True or <u>false</u>: Clock jitter is a long-term fluctuation of clock edges.
- 3. True or false: For un-correlated noise source, peak-peak jitter is added linearly.
- 4. True or false: An eye diagram can be used to observe clock jitter
- 5. True or false: SNR of an ADC can be limited by clock jitter

- 1. <u>True</u> or false: Random jitter is unbounded.
- 2. True or <u>false</u>: Clock jitter is a long-term fluctuation of clock edges.
- 3. True or <u>false</u>: For un-correlated noise source, peak-peak jitter is added linearly.
- 4. True or false: An eye diagram can be used to observe clock jitter
- 5. True or false: SNR of an ADC can be limited by clock jitter

- 1. <u>True</u> or false: Random jitter is unbounded.
- 2. True or <u>false</u>: Clock jitter is a long-term fluctuation of clock edges.
- 3. True or <u>false</u>: For un-correlated noise source, peak-peak jitter is added linearly.
- 4. <u>True</u> or false: An eye diagram can be used to observe clock jitter
- 5. True or false: SNR of an ADC can be limited by clock jitter

- 1. <u>True</u> or false: Random jitter is unbounded.
- 2. True or <u>false</u>: Clock jitter is a long-term fluctuation of clock edges.
- 3. True or <u>false</u>: For un-correlated noise source, peak-peak jitter is added linearly.
- 4. <u>True</u> or false: An eye diagram can be used to observe clock jitter
- 5. <u>True</u> or false: SNR of an ADC can be limited by clock jitter

To find more clocks and timing technical resources and search products, visit ti.com/clocks

