Jacinto[™] 7 processors: device management

Device management architecture

- · Key features and benefits
- Heterogeneous processing cores
- Application-specific hardware accelerators
- Device management architecture
- Memory architecture and data movement
- · Safety and isolation features
- Virtualization features
- · Security features
- Power management features
- Network connectivity
- Flash and storage
- Serial connectivity

Device management architecture

Device Management and Security Controller (DMSC):

- Closed Arm® Cortex®-M3 subsystem running TI firmware
- Abstracts key device management functions from other cores:
 - Power management:
 - Clock and PLL control
 - · Power domain control
 - Power mode and wakeup control
 - Device management:
 - Boot configuration
 - Quality of Service (QoS) configuration
 - · Interrupt and event allocations
 - DMA configuration and channel allocations
 - Security management:
 - Firewall control
 - · Boot security
 - Runtime security
 - Manage secure resources (cryptography)
- Secure messaging hardware for any allowed core to request services

Jacinto[™] 7 processors: memory architecture & data movement

- · Key features and benefits
- Heterogeneous processing cores
- Application-specific hardware accelerators
- Device management architecture
- Memory architecture and data movement
- Safety and isolation features
- Virtualization features
- · Security features
- Power management features
- Network connectivity
- Flash and storage
- Serial connectivity

- Optimized memory architecture:
 - 3-level hierarchical memory
 - Multi-Core Shared Memory Controller (MSMC)
 - Provides 2-8 MB of shared L3 SRAM/cache
 - CPU cache coherency for direct connected masters
 - IO coherency for allocated L3 data
 - High-speed LPDDR4/4x interface
 - In-line ECC with context cache
- Efficient SoC bus fabric:
 - High-bandwidth, non-blocking internal bus infrastructure for real-time traffic
 - Multi-channel DMA engines
 - Optimized paths to most relevant memory interfaces per core
- Quality-of-service features
 - MSMC credit based real-time paths
 - DMSC controlled route balancing
 - Priority arbitration and re-ordering

- Data Routing Unit (DRU): Embedded DMA in MSMC for high-bandwidth C71x/MMA data paging
- · IO masters w/ direct DMA: DSS, encoder, decoder, etc.
- Navigator Sub-System (NAVSS):
 - Collection of data-movement components
- NAVSS: Unified DMA controller (UDMA)+
 - DMA engine for block copy and data peripheral support
 - Standard parallel data slave peripherals via TI Common Bus Architecture Sub-System fabric (CBASS)
 - Channel control for some direct IO masters (VPAC, DMPAC)
 - Channel control for Packet Streaming Interface Link (PSIL) peripherals (Ethernet switch, CSI-2 camera interface, PDMA)
- NAVSS: Peripheral DMA (PDMA):
 - Distributed local-buffered DMA close to IO Peripherals
 - Transparent to software, program channels on UDMA
- NAVSS: MCRC
 - Safety block copy DMA for CRC checking
- NAVSS: Ring Accelerator (RA): DMA queue management providing abstracted software view to hardware DMA queues
- NAVSS: Proxy: Allows efficient access to RA queues with optional virtualization

- NAVSS: Virtualization IP subsystem (VIRTSS):
 - All uDMA/IO masters can optionally route via VIRTSS
 - Per channel selection for uDMA
 - Per master via QOS registers
 - · Per channel for virtualized peripherals
 - PAT, PVU, sMMU (TBU/TCU)
- NAVSS: North Bridge Subsystem (NBSS)
- NAVSS: Event management: Interrupt and event routers and aggregators
- NAVSS: IPC (Inter-processor communication):
 - Secure Proxy/RA (a.k.a "secProxy"): secure messaging between masters & DMSC
 - Mailbox: Legacy mailboxes with doorbells/interrupts
 - Spinlock: Legacy spinlock for real-time OS /software
- NAVSS: Time management:
 - Common Platform Time Stamp (CPTS) timestamping of events from various peripheral sources (e.g PCIe)
 - Timer manager: Enables scheduling / pacing of DMA to prevent excessive blocking

For more information

- For more training on Jacinto 7 processors: http://training.ti.com/jacinto7
- Download Processor SDK Automotive for Jacinto 7 processors: <u>http://www.ti.com/tool/PROCESSOR-SDK-DRA8X-TDA4X</u>
- Order TDA4VM Jacinto Automotive processors for ADAS & autonomous vehicles: <u>http://www.ti.com/product/TDA4VM</u>
- Order the TDA4VMx evaluation module: http://www.ti.com/tool/TDA4VMXEVM
- Order DRA829V Jacinto Automotive processors for gateway & vehicle compute: <u>http://www.ti.com/product/DRA829V</u>
- Order the DRA829Vx evaluation module: <u>http://www.ti.com/tool/DRA829VXEVM</u>
- For questions regarding topics covered in this training, visit the processors support forum at the TI E2E Community website: <u>https://e2e.ti.com</u>

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com