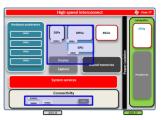
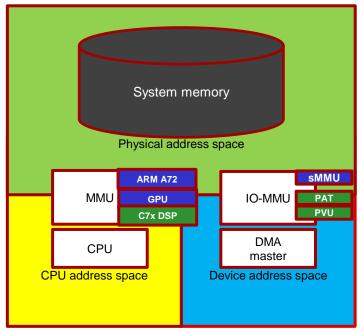
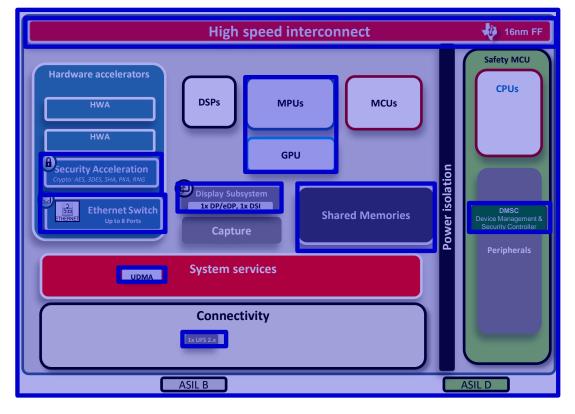

Jacinto™ 7 processors: virtualization


Virtualization features


- · Key features and benefits
- Heterogeneous processing cores
- Application-specific hardware accelerators
- Device management architecture
- Memory architecture and data movement
- Safety and isolation features
- Virtualization features
- Security features
- Power management features
- Network connectivity
- Flash and storage
- Serial connectivity

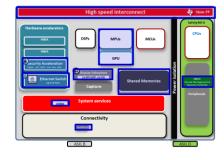
Virtualization features

- Memory Management Unit (MMU)
 - CPU 2-stage MMUs: A72, C71x, GPU (PVU as 2nd stage)
- IO-MMU
 - System MMU (sMMU):
 - Standard ARMv3 SMMU 2-stage system MMU
 - Support for PCle Single-Root I/O Virtualization (SRIOV)
 - TI IO-MMU Peripheral Virtualization Unit (PVU):
 - Deterministic address translation for real-time data (e.g. DSS)
 - Channelized Translation Lookaside Buffer (TLB); SW-triggered Flexible page size
- Page-based Address Translator (PAT):
 - Fine-grain, real-time address translation (4/16/64KB or 1MB)
 - Supports deterministic scatter-gather /defragmentation (e.g. display)
 - Address-mapped translation space
- Peripheral support:
 - DSS virtualized ownership of pipe and overlay management
 - GPU virtual resource manager
 - ARM generic interrupt controller (GIC-500)

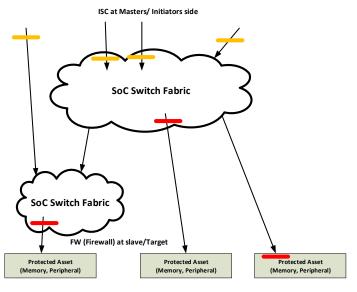

TI IP

Virtualization features 8 virtual 4 independent Virtualized **GPUs** display pipelines Up to 64 flows endpoints C7x+ MMA Rest of **GPU** DSS Ethernet PCle peripherals MMU MMU MMU Credentials mapping PVU + PAT sMMU Address translation + resource isolation Firewalls – per channel basis Peripheral configuration DMA configuration Memory **TEXAS INSTRUMENTS**

Jacinto™ 7 processors: security management

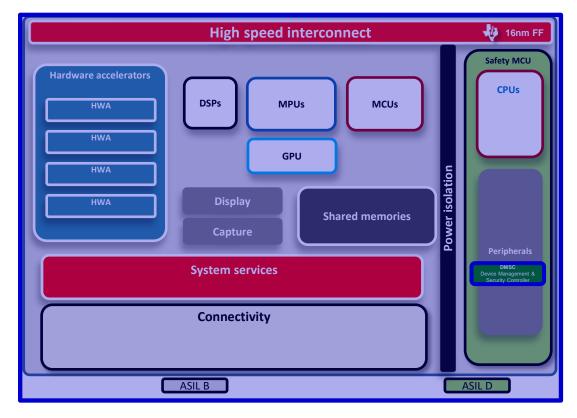

Security management features

- · Key features and benefits
- Heterogeneous processing cores
- Application-specific hardware accelerators
- Device management architecture
- Memory architecture and data movement
- Safety and isolation features
- Virtualization features
- Security features
- Power management features
- Network connectivity
- Flash and storage
- Serial connectivity

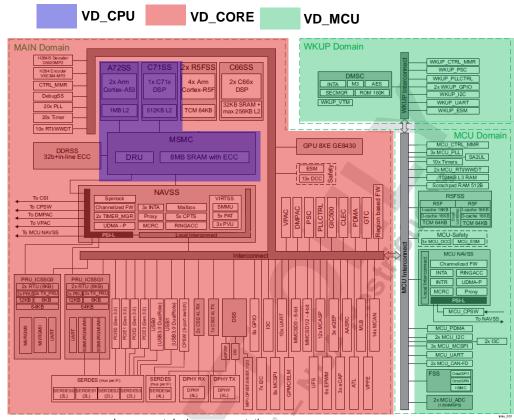


Security management features

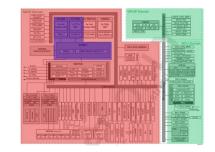
- Secure boot and runtime security support
- Customer-securable device via One-Time-Programmable (OTP) ROM
- DMSC (Arm Cortex-M3) security manager:
 - Sandbox concept for base root of trust
 - Secure messaging for all requests to DMSC
- Endpoint protection:
 - Initiator-Side Security Control (ISC)
 - Firewalls: Peripheral, Channelized, Memory
- Central hardware cryptography:
 - Multiple algorithms implemented in hardware
 - SHA2, AES, etc.
 - DMA flows route-able to or from crypto engines
 - Permissions controlled by DMSC
- IP/peripheral features
 - Cryptography required by standards (EDP, UFS, etc.)
 - GPU/decoder/DSS/Ethernet secure features
- Arm TrustZone



Jacinto™ 7 processors: power management


Power management features

- · Key features and benefits
- Heterogeneous processing cores
- Application-specific hardware accelerators
- Device management architecture
- Memory architecture and data movement
- Safety and isolation features
- Virtualization features
- Security features
- Power management features
- Network connectivity
- Flash and storage
- Serial connectivity


Power management features

- Voltage domains (AVS, power modes):
 - Adaptive voltage scaling for main CPUs
 - Shut off Main during MCU-only mode
- Power domains:
 - Internally-switched domains on major core/IP
- Clocking control:
 - Multiple PLL for fine-grain clock control
 - Dynamic Frequency Scaling (DFS)
 - Clock gating (SW and automatic)
- Power management IP:
 - Wake-up (WKUP) domain
 - Power-OK (POK) voltage detectors
 - Power glitch detectors (PGD)
 - Temperature sensors (per major domain)
 - Thermal diode

example superset device representation

Power management features

Power modes:

Total power + high

low

- *ACTIVE: All rails on, cores/peripherals active
- Standby: Arm CPU WFI (wait for interrupt) mode, system idled
- Core power domain OFF: All main power domains OFF, MCU on
- Deep sleep: All main power domains OFF, MCU Arm Cortex-R5 CPU off
- *MCU-only: Main voltage domain OFF, MCU on
- Suspend2RAM: All rails off except DDR IO, DDR in self-refresh mode

* NOTE: Can boot directly into MCU-only or ACTIVE mode

For more information

- For more training on Jacinto 7 processors: http://training.ti.com/jacinto7
- Download Processor SDK Automotive for Jacinto 7 processors: http://www.ti.com/tool/PROCESSOR-SDK-DRA8X-TDA4X
- Order TDA4VM Jacinto Automotive processors for ADAS & autonomous vehicles: http://www.ti.com/product/TDA4VM
- Order the TDA4VMx evaluation module: http://www.ti.com/tool/TDA4VMXEVM
- Order DRA829V Jacinto Automotive processors for gateway & vehicle compute: http://www.ti.com/product/DRA829V
- Order the DRA829Vx evaluation module: http://www.ti.com/tool/DRA829VXEVM
- For questions regarding topics covered in this training, visit the processors support forum at the TI E2E Community website: https://e2e.ti.com

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com