
TI OpenVX™ (TIOVX): Framework 
optimizations 
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Parallelism 

6 

• Enabled by graph model 

• Independent nodes can potentially be executed in parallel (using different 

execution units/cores) 
 

 



Graph Pipelining 
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Example of 4 nodes pipelined 

across 4 target cores 

• Pipelining multiple invocations of a graph 

across targets: 

– As images are fed to the system, the graph 

execution of these input images can be 

staged across targets in a pipeline fashion. 

– Enables full performance entitlement on 

SoC’s with multiple cores 



Additional optimizations 
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• Block/tile processing 

– When output depends only on subset of input (not 

entire input), the data to be processed can be 

broken into tiles, and fed into the graph. 

– Each node processes 1 tile of data at a time and the 

graph executes N times for 1 image (N is number of 

tiles in the image) 

– Removes intermediate round-trips to memory 

– Requires a custom DMA framework to be 

implemented 

 

• Abstraction of cache operations/address 

translation 

– TI provides internal memory API’s for optimized 

cache maintenance and address translation 



• Jacinto 7 Processor SDK Automotive download: 
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X  

• Processor SDK Linux Automotive (PSDKLA) user guide:  
${PSDKLA_INSTALL_PATH}/docs/linux/index.html 

• Processor SDK RTOS Automotive (PSDKRA) user guide:  
${PSDKRA_INSTALL_PATH}/index.html 

• For additional questions, refer to the E2E community forums: 
https://e2e.ti.com/support/processors/f/791 

• “Addressing System-Level Optimization with OpenVX Graphs” 
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6910050 

 

For more information 
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Enabled by TI OpenVX™ 
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Block/tile processing 

12 

• When output depends only on subset of input 

(not entire input), the data to be processed can 

be broken into tiles, and fed into the graph. 

• Each node processes 1 tile of data at a time and 

the graph executes N times for 1 image (N is 

number of tiles in the image) 

• Removes intermediate round-trips to memory 



Abstraction of cache operations/address translation 

• TI provides internal memory API’s for optimized cache maintenance and address 

translation 
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Graph model enables … kernel fusion 
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• Aggregate function replacement : 

– Identifying a sub-set of nodes which can be replaced by a single equivalent 

node: 

Executed graph 

Specified graph Internally replace 

with aggregate 

function during 

verify phase 


