
TI OpenVX™ (TIOVX): Framework
optimizations

No aggregation

Highest overhead

exec

E
x
e

c
u

ti
o

n
 t
im

e

call

exec

exec

Target 1
Host

processor Target 2

return

return

return

call

call

IPC aggregation

No aggregation

Highest overhead

exec

E
x
e

c
u

ti
o

n
 t
im

e

call

exec

exec

Target 1
Host

processor Target 2

return

return

return

call

call

Aggregation

(star topology)

Medium overhead

call

exec

exec
return

Target 1
Host

processor Target 2

return

call

IPC aggregation

No aggregation

Highest overhead

exec

E
x
e

c
u

ti
o

n
 t
im

e

call

exec

exec

Target 1
Host

processor Target 2

return

return

return

call

call

Aggregation

(star topology)

Medium overhead

call

exec

exec
return

Target 1
Host

processor Target 2

return

call

Aggregation

(mesh topology/

Peer to peer)

Least overhead

return

call

exec

exec

Target 1
Host

processor Target 2

call

exec

IPC aggregation

Enabled by TI OpenVX™

 framework!

No aggregation

Highest overhead

exec

E
x
e

c
u

ti
o

n
 t
im

e

call

exec

exec

Target 1
Host

processor Target 2

return

return

return

call

call

Aggregation

(star topology)

Medium overhead

call

exec

exec
return

Target 1
Host

processor Target 2

return

call

Aggregation

(mesh topology/

Peer to peer)

Least overhead

return

call

exec

exec

Target 1
Host

processor Target 2

call

exec

IPC aggregation

Parallelism

6

• Enabled by graph model

• Independent nodes can potentially be executed in parallel (using different

execution units/cores)

Graph Pipelining

N1 N2 N3 N4

N1 N2 N3 N4

N1 N2 N3 N4

N1 N2 N3 N4

N1 N2 N3 N4

N1 N2 N3

N1 N2

N1

0 1 2 3 4 5 6 7 8

Example of 4 nodes pipelined

across 4 target cores

• Pipelining multiple invocations of a graph

across targets:

– As images are fed to the system, the graph

execution of these input images can be

staged across targets in a pipeline fashion.

– Enables full performance entitlement on

SoC’s with multiple cores

Additional optimizations

8

• Block/tile processing

– When output depends only on subset of input (not

entire input), the data to be processed can be

broken into tiles, and fed into the graph.

– Each node processes 1 tile of data at a time and the

graph executes N times for 1 image (N is number of

tiles in the image)

– Removes intermediate round-trips to memory

– Requires a custom DMA framework to be

implemented

• Abstraction of cache operations/address

translation

– TI provides internal memory API’s for optimized

cache maintenance and address translation

• Jacinto 7 Processor SDK Automotive download:
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X

• Processor SDK Linux Automotive (PSDKLA) user guide:
${PSDKLA_INSTALL_PATH}/docs/linux/index.html

• Processor SDK RTOS Automotive (PSDKRA) user guide:
${PSDKRA_INSTALL_PATH}/index.html

• For additional questions, refer to the E2E community forums:
https://e2e.ti.com/support/processors/f/791

• “Addressing System-Level Optimization with OpenVX Graphs”
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6910050

For more information

http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
http://www.ti.com/tool/PROCESSOR-SDK-JACINTO-DRA8X-TDA4X
https://e2e.ti.com/support/processors/f/791
https://e2e.ti.com/support/processors/f/791
https://e2e.ti.com/support/processors/f/791
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6910050
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6910050

Enabled by TI OpenVX™

 framework!

No aggregation

Highest overhead

exec

E
x
e

c
u

ti
o

n
 t
im

e

call

exec

exec

Target 1
Host

processor Target 2

return

return

return

call

call

Aggregation

(star topology)

Medium overhead

call

exec

exec
return

Target 1
Host

processor Target 2

return

call

Aggregation

(mesh topology/

Peer to peer)

Least overhead

return

call

exec

exec

Target 1
Host

processor Target 2

call

exec

IPC aggregation

Block/tile processing

12

• When output depends only on subset of input

(not entire input), the data to be processed can

be broken into tiles, and fed into the graph.

• Each node processes 1 tile of data at a time and

the graph executes N times for 1 image (N is

number of tiles in the image)

• Removes intermediate round-trips to memory

Abstraction of cache operations/address translation

• TI provides internal memory API’s for optimized cache maintenance and address

translation

Array of

Keypoints

YUV

Frame

Gray

Frame

Pyrt

Color
Conversion

(DSP)

Channel
Extract
(DSP)

Optical
Flow

(HWA)

Harris
Track
(DSP)

Image
Pyramid
(HWA)

Array of

Features
Ftrt-1 OpenVX Graph

Camera

Input

RGB

Frame

Rendering

Output

Graph model enables … kernel fusion

14

• Aggregate function replacement :

– Identifying a sub-set of nodes which can be replaced by a single equivalent

node:

Executed graph

Specified graph Internally replace

with aggregate

function during

verify phase

