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EV/HEV industry trends  
• Emission regulations around the world are driving the adoption of EVs/HEVs 

Emission targets getting lower, phasing in 2020 

Penalty payments for excess emissions! 
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Various battery cell chemistries available in the 
market 

• Cost will limit favorability of LTO in this application due to inherent series cell counts   

• NMC and LFP have most potential for mainstream success based on cost  

• Higher impedance of NMC makes active cooling a basic system requirement  

• LFP could be optimized to further reduce impedance and potentially reduce/eliminate the need for active cooling 
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LFP offers several key advantages 
• 4 main advantages offered by LFP batteries 

– Higher safety than traditional NMC batteries 

– Ultra long cycle life enabling the use of LFP batteries in energy storage systems as a 

second life 

– Can safely be charged and discharged at a higher rate than traditional NMC batteries 

– Low cost 

Chemistry Voltage Energy density 
Working 

temp 
Cycle life Safety 

Cost based on cycle life x 

Wh of SLA 

Lead acid 

(SLA) 
2.0 V >35 Wh/kg -20 - 40°C >200 Safe 1 

LCO 3.7 V >150 Wh/kg -20 - 60°C >500 
Unsafe w/o 

PCM 
1.5-2.0 

NMC 3.7 V >150 Wh/kg -20 - 40°C >1000 
Better than 

LCO 
1.5-2.0 

LFP 3.2 V >90 Wh/kg -20 - 60°C  >2000 Safe 0.15-0.25 lower than SLA 
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Higher safety of LFP 

• 4 key reasons why LFP offers higher safety than traditional NMC batteries 

– LFP has higher starting temperature for exothermic reactions 

– LFP has slower exothermic reaction 

– LFP has limited heat generation 

– No oxygen is released   

Battery chemistry 
Thermal runaway 

temperature 

LCO 150°C 

NMC 210°C 

LFP 270°C 

5 Source: Virtual Vehicle Research 

https://pubs.rsc.org/en/content/articlehtml/2014/ra/c3ra45748f:~:text=During%20the%20thermal%20runaway%2C%20the%20cells%20produced%20a%20significant,of%20gas%20(Table%203).&text=The%20highest%20amount%20of%20gas,the%20least%20amount%20of%20gas.


Ultra long cycle life enables second life of LFPs 

• LFP offers significantly more cycle life than NMC or LCO battery chemistries. 

This enables the use of LFP batteries in energy storage systems (ESS) as a 

second life. 

• Once the state of health (SoH) of an LFP battery is reduced to 80 to 90%, the 

battery is removed from EV/HEV and used in ESS. This significantly helps to 

reduce the cost of LFP batteries.   

 

 

Battery chemistry Cycle life 

LCO 500-1000 

NMC 1000-2000 

LFP 2000 and higher 
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LFP has some challenges though 
• 2 key challenges of LFP batteries 

– Lower energy density 

 

 

 

 

 

– Flat discharge profile makes it difficult to precisely track SOC%   

Battery chemistry Energy density 

LCO 150 – 200 Wh/kg 

NMC 150 – 220 Wh/kg 

LFP 90 – 120 Wh/kg 
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https://link.springer.com/article/10.1186/s10033-018-0268-8


Overcoming the lower energy density challenge 

• LFPs traditionally have been most suitable for ESS applications. ESS applications are 

relatively less space constrained and LFPs’ lower costs and longer cycle life make them a 

very lucrative option. 

• One way to make LFPs suitable for passenger EVs/HEVs is to improve the space 

utilization inside the battery pack. With cell to pack technology, the space utilization can 

be increased by as much as 50%, thereby allowing more cells to fit inside the battery 

pack.      

Existing battery pack architecture 

Cell Module Pack Cell Pack 

Cell to pack architecture 
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LFPs flat discharge profile requires higher 
accuracy of battery monitors  

• The flat discharge profile of LFPs makes it very difficult to precisely estimate the 

SOC% of the battery 

 

• A slight error in the OCV measurement can result in significant error in SOC% 

estimation  

 

• This has presented new challenges to the monitors and balancers that are used 

to measure and report the open circuit voltage of the battery cells 

 

• TI’s portfolio of automotive battery monitors and balancers are continuously 

pushing the boundary of measuring the open circuit voltage more accurately 

from generation to generation 
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Defining accuracy 

• An SOx gauge algorithm (running on MCU) needs to have data from the battery 

through various measurements 

– Battery cell voltage  

– Current flowing into and out of the battery pack 

– Battery cell temperature 

 

 

• Measurement accuracy is dependent upon the monitors’ and balancers’ 

hardware and is independent of gauging algorithm accuracy 

• SOx gauge algorithm accuracy is dependent upon the robustness of the 

gauging algorithm and the monitors’ and balancers’ measurement accuracy 

– Poor measurement accuracy can lead to poor gauging accuracy 

SOX : State-of-X  X: charge, health, power, energy 

V(t) 

I(t) 

T(t) 
E F 
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Monitors’ and balancers’ measurement accuracy 

• Voltage 

– Accurate voltage measurements are critical for 

• Initialization of relaxed cell 

• Updates during self-discharge of cell 

• Correction for coulomb counting error 

• Current 

– Accurate to enable coulomb counting to capture 

• Low sleep currents 

• Short load spikes 

• Proper passed charge 

• Temperature 

– Accurate temperature measurements are critical for 

• Proper compensation of resistance 

• Proper compensation of predicted runtime 11 



Impact of cell voltage measurement accuracy on 
mileage  
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• A certain amount of error (mV) 

while measuring the cell voltage 

will have a different impact on 

the mileage estimate depending 

on what slope the measurement 

occurs (A or B) 

• The higher the accuracy, the 

less the error, the more energy 

is extracted from the cell 

• This translates to more mileage 

and no need to overdesign the 

total battery capacity 

A B 
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Total channel voltage accuracy – Theory 
Nomenclature of the various (cell voltage measurement) accuracy errors 

• Time zero (t0) = accuracy error measured on a socketed board, before the IC gets soldered down on the PCB  

• Solder-down shift (SdS) = additional accuracy error induced by the mechanical stress and reflow process after 

the IC is soldered down on the PCB. This is an incremental error with respect to time zero. 

• Beginning of life (BOL) = t0+SdS;  it is the accuracy error of the IC after it has been soldered down on the PCB 

• Long-term drift (LTD) = additional accuracy error due to the IC aging components that are part of the internal 

reference voltage. This is an incremental error with respect to BOL. 

• End of life (EOL) = BOL+ LTD ; it is the total accuracy error of the IC that considers both the BOL and the 

additional drift due to aging 

 

 

 

15 years 

t0 BOL EOL 

Solder 

down 
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Total channel voltage accuracy – Theory 

There are 2 ways to calculate the total voltage accuracy error with the different contributors 

 

1. Linearly adding the various contributors 

– EOL = t0 + SdS + LTD  

– EOL = BOL + LTD 

This method is more conservative and applies when the sources of error of each 

contributor are correlated 

 

2. Square root of the addition of the squares  

– EOL= BOL 2+ LTD 2 

This method is less conservative and applies when the sources of error of each 

contributor are uncorrelated 
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Total channel voltage accuracy – BQ  
• TI balancers and monitors leverage innovative technology that compensates and corrects the additional 

error due to solder-down shift 

• This makes the BOL source of error independent from voltage reference 

• EOL additional shift remains dependent from the aging of the components in the reference voltage 

 

 

 
15 years 

t0 BOL EOL 

Solder 

down 

compensated 

EOL= BOL 2+ LTD 2 As now the sources of error of each contributor are uncorrelated this applies: 

(No increase) 
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Noise filter challenge 

• EV battery sits in a very challenging environment 

– Noise from BCI noise on sense line, inverter induced noise, charging noise, etc.  

– Their resonance frequency can go from 100s of Hz up to 10s of MHz 

• The filter design in our BQ family gives best performance with optimized BOM 

count 

Accuracy is ‘nothing’ without noise filtering 

Elaborate on accuracy in absence of noise  update DC and SOH 

Accuracy when noise is present  SOC while in motion, remaining mileage 
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Filters – Overview 

• Two types of filters are implemented in the BQ796x6 family 

– Analog (RC, BCI, AAF)  

– Digital (1st  order low pass/ SINC) 

 

GND

f-3dB = 1.7KHz 
f-3dB = 13Hz

Configurable
f-3dB = 1.12KHz 

fdata = 5.2KHz

Vin Dout_filt

fs = 5.2KHz per 

channel

  SAR

  ADC

BQ7961X VC signal chain simplified diagram

f-3dB = 100KHz 

Dout

On chip 

Anti aliasing filter (AAF)

Differential Mode

Digital Low pass 

filter

On chip 

BCI filter

Common mode

On chip 

RC filter

Common mode

Analog Digital 
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Freq in kHz in log domain 

w/o AAF filter 

w/ AAF filter 

System-level benefits – RC and anti-aliasing filters   

Without AAF or ineffective AAF, 

digital filter is not effective  
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Freq in kHz in log domain 

30 dB better 

w/o AAF filter 

w/ RC & AAF filter 

• With 2 filters, noise 

attenuation 20-30dB better 

• Smaller external C value 

System-level benefits – RC and anti-aliasing filters   
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Freq in kHz in log domain 

System-level benefits – Digital low pass filter (1) 

33 dB better 

13 Hz 

111 Hz 

111 Hz 

13 Hz 

• Save signal processing 

workload on MCU and 

• Suppress AC noise > 40 dB 
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Monitors’ and balancers’ accuracy roadmap 
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BQ76PL455A 
4 mV 

Vcell total channel accuracy error [mV] 

BQ79606A 
3 mV 

BQ7961x 
2 mV 

Future 
<1 mV 

2015 2019 2020 RTM year 

Industry’s trend 



Aiming to provide you with convenience 

• Largest inventory of authentic TI products 

• Immediately available inventory 

• Lowest online prices* 

• Cut tape, custom and full quantity reels 

• Exclusive access to preproduction devices 

• Multiple payment options: line of credit (select 

regions), credit cards, PayPal, AliPay, WeChat 

Pay, and Union Pay 

• Flat-rate shipping anywhere, every day 

ti.com/buy 

Buying on TI.com: from concept to production, inventory when you need it.  
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*Lowest online prices on 1K unit quantities for 99% of TI’s 

immediately available inventory. Excludes expired products and 

products sold by non-authorized sources.  
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