Instrumentation amplifier topologies: three-amp

TI Precision Labs - Instrumentation Amplifiers
Presented by Tamara Alani
Prepared by Tamara Alani

IA topologies - One amp recap

Difference amplifier output equation:

$$
V o u t=V d \times A d+\operatorname{Ref}
$$

Where Ad is the gain of the circuit
If $R 1=R 3$, and $R 2=R 4$, then $\operatorname{Ad}=\frac{R 2}{R 1}$
Challenges:

1. Precision relies on matched resistors
2. Low input impedance

Difference amplifier recap - Input impedance

Design challenges:

- Low input impedance
- Precisely matched resistances
- This circuit will draw current from the signal source, and if the source's output impedance is not zero, it will degrade accuracy.

IA topologies - Three amp configuration

3 amp IA input impedance - Current sensing

$>$ Input impedance from 10^{9} to $10^{12} \Omega$ are typical, due to A1 and A2
> This high input impedance limits the current flowing through the inputs to levels ranging from pA to nA .
> Current draw is still dependent on technology, temperature, common mode voltage, and more.

3 amp IA - Gain control

Signal gain, $A d=\frac{R 2}{R 1}$
This is assuming:

$$
R 1=R 3 \text { and } R 2=R 4
$$

If gain needs to be adjusted, 4 resistors need to be changed and matched for optimal precision.

Want: Easy gain control
Solution: Pull into first stage

3 amp IA - Two stage breakdown

3 amp IA derivation - First stage

- VOUTA1 consists of two components: voltage due to V1 and V2
- If $\mathrm{V} 2=0 \mathrm{~V}$, then $\mathrm{VA} 2-=0 \mathrm{~V}$
- A1 looks like a non-inverting amplifier:

$$
\begin{aligned}
A d & =1+\frac{R f}{R g}, \text { and } \\
\text { Vout } \boldsymbol{A 1} & =\boldsymbol{V} \mathbf{1} \times\left(\mathbf{1}+\frac{\boldsymbol{R} \boldsymbol{f}}{\boldsymbol{R} \boldsymbol{g}}\right)
\end{aligned}
$$

Equation 1

3 amp IA derivation - Frist stage cont'd

- If $\mathrm{V} 1=0 \mathrm{~V}$, then $\mathrm{VA} 1-=0 \mathrm{~V}$
- A1 looks like an inverting amplifier:

$$
A d=-\frac{R f}{R g}, \text { and }
$$

$$
\text { VOUTA1 }=\mathrm{V} 2 \times\left(\frac{-R f}{R g}\right)
$$

Equation 2

3 amp IA derivation - Combined

Equation 1: VOUTA1 $=\boldsymbol{V} \mathbf{1} \times\left(\mathbf{1}+\frac{\boldsymbol{R f}}{\boldsymbol{R g}}\right)$
Equation 2: $\boldsymbol{V O U T A 1}=\mathrm{V} 2 \times\left(\frac{-\boldsymbol{R f}}{\boldsymbol{R g}}\right)$
Combing Equations 1 and 2:

$$
\begin{aligned}
\text { VOUTA1 } & =\left(1+\frac{R f}{R g}\right) \times \mathrm{V} 1-\left(\frac{R f}{R g}\right) \times \mathrm{V} 2 \\
& =\left(\frac{\boldsymbol{R} \boldsymbol{f}}{\boldsymbol{R g}}\right) \times(\mathrm{V} 1-\mathrm{V} 2)+\mathrm{V} 1
\end{aligned}
$$

...Do the same to $A 2$

$$
\text { VOUTA2 }=\left(\frac{R f}{R g}\right) \times(\mathrm{V} 2-\mathrm{V} 1)+\mathrm{V} 2
$$

VOUTA1 and VOUTA2 feed into A3 (difference amplifier) Assume R1=R3 and R2=R4, then

$$
\operatorname{VOUTA} 3=\left(\frac{R 2}{R 1}\right) \times(\text { VOUTA2 }- \text { VOUTA1 })+\text { Ref }
$$

3 amp IA derivation - Combined

$$
\begin{aligned}
& \text { VOUTA1 }=\frac{R f}{R g} \times(\mathrm{V} 1-\mathrm{V} 2)+\mathrm{V} 1 \\
& \text { VOUTA2 }=\frac{R f}{R g} \times(\mathrm{V} 2-\mathrm{V} 1)+\mathrm{V} 2 \\
& \text { VOUTA } 3=\frac{R 2}{R 1} \times(\mathrm{VOUTA} 2-\mathrm{VOUTA} 1)+\text { Ref }
\end{aligned}
$$

Substitute the equations for VOUTA1 and VOUTA2 into VOUTA3:
VOUT $=\frac{R 2}{R 2} \times\left(\left(\frac{R f}{R g} \times(\mathrm{V} 1-\mathrm{V} 2)+\mathrm{V} 1\right)-\left(\frac{R f}{R g} \times(\mathrm{V} 2-\mathrm{V} 1)+\mathrm{V} 2\right)\right)+R e f$

Simplifying...

$$
\text { VOUT }=(V 2-V 1) \times \frac{R 2}{R 1} \times\left(1+\frac{2 R f}{R g}\right)+R e f
$$

Where the differential gain, Ad is $\frac{R 2}{R 1} \times\left(1+\frac{2 R f}{R g}\right)$

3 amp IA - Circuit goal

Circuit component goal:

Match R1 to R2, R3 and R4 to form a unity gain difference amplifier
Match Rf1 and Rf2; feedback resistors which interact with Rg to alter the gain of the input signal (Vd)

Transfer function recap:

$$
A d=\frac{R 2}{R 1} \times\left(1+\frac{2 R f}{R g}\right)
$$

Vout $=A d \times V d+$ Ref, where $V d=V 2-V 1$
Amplifier roles:
A1 \& A2 operate with differential gain to amplify the signal
A3 unity gain difference amplifier

Instrumentation amplifier - Idealized model

Two main characteristics of an instrumentation amplifier:

1. Amplifies the signals that differ between the two inputs
2. Rejects the signals that are the same (common) to both inputs

Idealized model - Common mode voltage analysis

Apply a common mode voltage:

When a common-mode voltage is applied to inputs of $A 1$ and $A 2$, either side of $R g$ will be equal.
$I R g=I R f 1=I R f 2=0 A$

Common mode signals will be passed through input buffers A1 and A2 at unity gain, but differential voltages will be amplified by:

$$
1+\frac{2 R f}{R g}
$$

The second stage difference amplifier rejects this common mode voltage and passes only the differential voltage.

CMRR - How gain effects CMRR

$$
\operatorname{CMRR}\left(\frac{V}{V}\right)=\frac{\text { differential gain }}{\text { common mode gain }}=\frac{A_{d}}{A_{C M}}
$$

When gain is increased by Rg :

- the differential signal will be increased
- but the common-mode error will not
$\frac{A_{d}}{A_{c M}}$ will increase so CMRR will theoretically increase in direct proportion to gain

3 amp IA - Linear behavior analysis

3 amp IA with RRIO amps
$\mathrm{Vs}=5 \mathrm{~V}$ single supply
$\mathrm{V} 2=4 \mathrm{~V}, \mathrm{~V} 1=3 \mathrm{~V}$

$$
V d=V 2-V 1=1 V
$$

$A d=\frac{R 2}{R 1} \times\left(1+\frac{2 R f}{R g}\right)=\frac{3 V}{V}$

$$
\operatorname{Ref}=0 V
$$

Vout $=\mathrm{Vd} \times \mathrm{Ad}+$ Ref $=3 \mathrm{~V}$

Input and output - RRIO

- Rail-to-Rail input and output amplifiers

- Rail-to-Rail input (RRI) amplifiers have input ranges which extend to and sometimes beyond the rail
- Rail-to-Rail output (RRO) amplifiers have output swings near the rails

3 amp IA - Linear behavior analysis

VOUTA1 $=\frac{R f}{R g} \times(\mathrm{V} 1-\mathrm{V} 2)+\mathrm{V} 1$
$\operatorname{VOUTA2}=\frac{R f}{R g} \times(\mathrm{V} 2-\mathrm{V} 1)+\mathrm{V} 2$
VOUTA3 $=\frac{R 2}{R 1} \times($ VOUTA2 - VOUTA1 $)+$ Ref

RRI: to and beyond the rail: $0 \mathrm{~V} \leq \mathrm{Vin} \leq 5 \mathrm{~V}$
RRO: near the rail: $0.1 \mathrm{~V} \leq$ Vout $\leq 4.9 \mathrm{~V}$

Let us analyze each amplifier individually:

A1:

- Input $=3 \mathrm{~V}$, this is within $0 \mathrm{~V} \leq \mathrm{Vin} \leq 5 \mathrm{~V}$
- Output $=2 \mathrm{~V}$, this is within $0.1 \mathrm{~V} \leq \mathrm{Vout} \leq 4.9 \mathrm{~V}$

A2:

- Input $=4 \mathrm{~V}$, this is within $0 \mathrm{~V} \leq \mathrm{Vin} \leq 5 \mathrm{~V}$
- Output $=5 \mathrm{~V}$, this is NOT within $0.1 \mathrm{~V} \leq \mathrm{Vout} \leq 4.9 \mathrm{~V}$

3 amp IA - Boundary plot

Boundary plots graphically show a designer the usable range of an IA by analyzing the internal nodes.

Analog engineer's calculator \rightarrow INA VCM vs Vout

3 amp IA with gain - Example

Assume the following conditions:
Power supply $= \pm 5 \mathrm{~V}$
Reference voltage $=0 \mathrm{~V}$
$\mathrm{Vd}=10 \mathrm{mV}, \mathrm{VCM}=1 \mathrm{~V}$
Expected Vout is 3 V
Calculate gain: $\frac{\Delta V \text { out }}{\Delta V \text { in }}=\frac{3 \mathrm{~V}}{10 \mathrm{mV}}=300 \mathrm{~V} / \mathrm{V}$ Ad for a 3 amp IA:

$$
\begin{gathered}
A d=\frac{R 2}{R 1} \times\left(1+\frac{2 R f}{R g}\right) \\
300=\frac{40 k}{40 k} \times\left(1+\frac{2 \times 25 k}{R g}\right)
\end{gathered}
$$

Solve for Rg = 167.2 Ω

3 amp IA with gain - Example

Assume the following conditions:
Power supply $= \pm 5 \mathrm{~V}$
Reference voltage $=0 \mathrm{~V}$
$\mathrm{Vd}=10 \mathrm{mV}, \mathrm{VCM}=1 \mathrm{~V}$
Expected Vout is 3 V
Gain $=300 \mathrm{~V} / \mathrm{V}, \mathrm{Rg}=167.2 \Omega$

Common mistakes - Current consumption

Current consumption of an IA is the sum of all load currents (i1, I2, and i3) in addition to the quiescent current and any loading on Vout.

- i1: between VOUTA1 and VOUTA2 through Rf1, Rg, and Rf2 and back through the power supplies.
- i2: between VOUT and VOUTA1 through R2 \& R1, back through the power supplies.
- i3:between VOUTA2 and Ref through R3 \& R4 and back through the power supplies.
Analog engineer's calculator \rightarrow IA Current Consumption

Common mistakes - Driving the Ref pin

Common mistakes - Driving the Ref pin cont'd
 VS+

Instrumentation amplifier topologies - 3 amp summary

Amplifiers A1 and A2:

- balanced input - balanced output stage
- amplifies the differential signal put passes the common mode signal without amplification.
- Responsible for the high input impedance

Amplifier A3:

- forms the second stage of this design as a difference amplifier
- largely removes the common mode signal.

Summary:

If you have an application where you have high impedance sources and high common mode voltages, consider a three-amp IA topology.

Thanks for your time!

To find more Instrumentation Amplifier technical resources and search products, visit ti.com/inas

Quiz: Instrumentation Amplitier (1A topologies: three-amp
 TI Precision Labs - Instrumentation Amplifiers

Presented by Tamara Alani
Prepared by Tamara Alani

Quiz: (IA) topologies: three-amp || Question

1. What are two challenges associated with the discrete one-amp IA topology?
a) The one-amp IA consumes more power
b) The one-amp IA has low input impedance
c) The one-amp IA must have precisionmatched resistors for high accuracy
d) The one-amp IA has fixed gain
e) The one-amp IA can only be used for $m V$-level input signals
f) $b \& e$
g) $c \& a$
h) $b \& c$

Quiz: (IA) topologies: three-amp || Answer

1. What are two challenges associated with the discrete one-amp IA topology?
a) The one-amp IA consumes more power
b) The one-amp IA has low input impedance
c) The one-amp IA must have precisionmatched resistors for high accuracy
d) The one-amp IA has fixed gain
e) The one-amp IA can only be used for $m V$-level input signals
f) $b \& e$
g) $c \& a$
h) b \& c

Quiz: (IA) topologies: three-amp || Question

2. A one-amp IA has low input impedance. What is best way to resolve this?
a) Add really large input resistors (R1 through R4)
b) Put the amplifier in high gain
c) Add two buffers at the inputs (V1 and V2)
d) Find an amplifier with high input impedance

Quiz: (IA) topologies: three-amp || Answer

2. A one-amp IA has low input impedance. What is best way to resolve this?
a) Add really large input resistors (R1 through R4)
b) Put the amplifier in high gain
c) Add two buffers at the inputs (V1 and V2) ${ }_{\mathrm{V} 1}$
d) Find an amplifier with high input impedance

Quiz: (IA) topologies: three-amp || Question

3. What is the gain equation for a three-amp IA?
a) Gain $=\frac{R 2}{R 1}$
b) Gain $=\mathrm{Rg}$
c) Gain $=\frac{\mathrm{R} 2}{\mathrm{R} 1} \times(\mathrm{Rg}+2 \times \mathrm{Rf})$
d) Gain $=\frac{\mathrm{R} 2}{\mathrm{R} 1} \times\left(1+\frac{2 \times \mathrm{Rf}}{\mathrm{Rg}}\right)$

Quiz: (IA) topologies: three-amp || Answer

3. What is the gain equation for a three-amp IA?
a) Gain $=\frac{R 2}{R 1}$
b) Gain $=R g$
c) Gain $=\frac{\mathrm{R} 2}{\mathrm{R} 1} \times(\mathrm{Rg}+2 \times \mathrm{Rf})$
d) Gain $=\frac{\mathrm{R} 2}{\mathrm{R} 1} \times\left(1+\frac{2 \times \mathrm{Rf}}{\mathrm{Rg}}\right)$

Quiz: (IA) topologies: three-amp || Question

4. Using the INA333-Q1 (TI's Automotive, Zero-drift, low power IA), what value of Rg do you need to achieve a signal gain of 501V/V?
a) $\mathrm{Rg}=100 \Omega$
b) $\mathrm{Rg}=200 \Omega$
c) $\mathrm{Rg}=200 \mathrm{k} \Omega$
d) $R g=501 \Omega$

Go to the product datasheet:
https://www.ti.com/lit/ds/symlink/ina333-q1.pdf

Quiz: (IA) topologies: three-amp || Answer

4. Using the INA333-Q1 (TI's Automotive, Zero-drift, low power IA), what value of Rg do you need to achieve a signal gain of $501 \mathrm{~V} / \mathrm{V}$?
a) $\mathrm{Rg}=100 \Omega$
b) $\mathrm{Rg}=200 \Omega$
c) $\mathrm{Rg}=200 \mathrm{k} \Omega$
d) $\mathrm{Rg}=501 \Omega$

Go to the product datasheet:
https://www.ti.com/lit/ds/symlink/ina333-q1.pdf

$$
\text { Gain }=\left(1+\frac{100 \mathrm{k} \Omega}{\mathrm{Rg}}\right)
$$

Quiz: (IA) topologies: three-amp || Question

5. What is the differential gain of the following circuit?
a) Gain $=5 \mathrm{~V} / \mathrm{V}$
b) Gain $=2 \mathrm{~V} / \mathrm{V}$
c) Gain $=4 \mathrm{~V} / \mathrm{V}$
d) Gain $=10 \mathrm{~V} / \mathrm{V}$

Quiz: (IA) topologies: three-amp || Answer

5. What is the differential gain of the following circuit?
a) Gain $=5 \mathrm{~V} / \mathrm{V}$
b) Gain $=2 \mathrm{~V} / \mathrm{V}$
c) Gain $=4 \mathrm{~V} / \mathrm{V}$
d) Gain $=10 \mathrm{~V} / \mathrm{V}$

$$
A d=\frac{R 2}{R 1} \times\left(1+\frac{2 R f}{R g}\right)
$$

Quiz: (IA) topologies: three-amp || Question

6. Using the INA818 (TI's high-precision, low-power IA with over-voltage protection), create a boundary plot for the following conditions:

- Voltage supply $= \pm 15 \mathrm{~V}$
- Gain $=100 \mathrm{~V} / \mathrm{V}$
- Reference = 0V
- Common mode voltage $=8 \mathrm{~V}$

Use the INA Boundary Plot calculator in the Analog Engineer's Calculator:
https://www.ti.com/tool/ANALOG-ENGINEER-CALC

Quiz: (IA) topologies: three-amp || Answer

6. Using the INA818 (Tl's high-precision, low-power IA with over-voltage protection), create a boundary plot for the following conditions:

- Voltage supply $= \pm 15 \mathrm{~V}$
- Gain $=100 \mathrm{~V} / \mathrm{V}$
- Reference $=0 \mathrm{~V}$
- Common mode voltage $=8 \mathrm{~V}$

Use the INA Boundary Plot calculator in the Analog Engineer's Calculator:
https://www.ti.com/tool/ANALOG-ENGINEER-CALC

Quiz: (IA) topologies: three-amp || Question

7. In theory, how does CMRR change with signal differential gain
a) When signal gain is increased, ACM / Ad will increase so CMRR will double
b) When signal gain is decreased, ACM / Ad will increase so CMRR will increase in direct proportion to gain
c) When signal gain is increased, Ad / ACM will increase so CMRR will increase by a factor of $1 / 2$
d) When signal gain is increased, Ad / ACM will increase so CMRR will increase in direction proportion to gain

Quiz: (IA) topologies: three-amp || Answer

7. In theory, how does CMRR change with signal differential gain
a) When signal gain is increased, ACM / Ad will increase so CMRR will double
b) When signal gain is decreased, ACM / Ad will increase so CMRR will increase in direct proportion to gain
c) When signal gain is increased, Ad / ACM will increase so CMRR will increase by a factor of $1 / 2$
d) When signal gain is increased, Ad / ACM will increase so CMRR will increase in direction proportion to gain

$$
C M R R\left(\frac{V}{V}\right)=\frac{\text { differential gain }}{\text { common mode gain }}=\frac{A_{d}}{A_{C M}}
$$

Quiz: (IA) topologies: three-amp || Question

8. What are the typical magnitudes of input impedance for a 3 op amp IA?
a) 1Ω to $1 \mathrm{k} \Omega$
b) $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
c) $100 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$
d) $10^{9} \Omega$ to $10^{12} \Omega$

Quiz: (IA) topologies: three-amp || Answer

8. What are the typical magnitudes of input impedance for a 3 op amp IA ?
a) 1Ω to $1 \mathrm{k} \Omega$
b) $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
c) $100 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$
d) $10^{9} \Omega$ to $10^{12} \Omega$

Quiz: (IA) topologies: three-amp || Question

9. How do you determine the total current consumption of a 3 op amp IA?
a) Look for the quiescent current specified in the datasheet and multiply it by 3
b) (Load currents (i1, I2, and i3) + quiescent current) multiplied by 3
c) Load currents (i1, I2, and i3) + quiescent current + any loading on Vout
d) (Load currents (i1, l2, and i3) + quiescent current

Quiz: (IA) topologies: three-amp || Answer

9. How do you determine the total current consumption of a 3 op amp IA?
a) Look for the quiescent current specified in the datasheet and multiply it by 3
b) (Load currents (i1, I2, and i3) + quiescent current) multiplied by 3
c) Load currents (i1, I2, and i3) + quiescent current + any loading on Vout
d) (Load currents (i1, I2, and i3) + quiescent current

To find more Instrumentation Amplifier technical resources and search products, visit ti.com/inas

