Instrumentation amplifier (IA) topologies: three-amp TI Precision Labs – Instrumentation Amplifiers

Presented by Tamara Alani Prepared by Tamara Alani

IA topologies – One amp recap

Difference amplifier output equation:

 $Vout = Vd \times Ad + Ref$

Where Ad is the gain of the circuit

If R1 = R3, and R2 = R4, then $Ad = \frac{R2}{R1}$

Challenges:

Precision relies on matched resistors

2. Low input impedance

Difference amplifier recap – Input impedance

Design challenges:

- Low input impedance
- Precisely matched resistances
- This circuit will draw current from the signal source, and if the source's output impedance is not zero, it will degrade accuracy.

IA topologies – Three amp configuration

Difference out amplifier output stage

3 amp IA input impedance – Current sensing

- \succ Input impedance from 10⁹ to 10¹² Ω are typical, due to A1 and A2
- > This high input impedance limits the current flowing through the inputs to levels ranging from pA to nA.
- \succ Current draw is still dependent on technology, temperature, common mode voltage, and more.

3 amp IA – Gain control

Signal gain, $Ad = \frac{R2}{R1}$

This is assuming:

R1 = R3 and R2 = R4

If gain needs to be adjusted, 4 resistors need to be changed and matched for optimal precision.

Want: Easy gain control **Solution:** Pull into first stage

3 amp IA – Two stage breakdown

Difference amplifier output stage

3 amp IA derivation – First stage

• VOUTA1 consists of two components: voltage due to V1 and V2

• A1 looks like a non-inverting amplifier:

$$Ad = 1 + \frac{Rf}{Rg}$$

Equation 1

- = 0V

-, and $VoutA1 = V1 \times \left(1 + \frac{Rf}{Rg}\right)$

3 amp IA derivation – Frist stage cont'd

- If V1 = 0V, then VA1 = 0V
- A1 looks like an inverting amplifier:

 $Ad = -\frac{Rf}{Rg}$, and

Equation 2

 $VOUTA1 = V2 \times \left(\frac{-Rf}{Rg}\right)$

3 amp IA derivation – Combined

Equation 1: $VOUTA1 = V1 \times \left(1 + \frac{Rf}{Ra}\right)$ Equation 2: $VOUTA1 = V2 \times \left(\frac{-Rf}{Pa}\right)$ Combing Equations 1 and 2: $VOUTA1 = \left(1 + \frac{Rf}{Rg}\right) \times V1 - \left(\frac{Rf}{Rg}\right) \times V2$ $=\left(\frac{Rf}{Ra}\right)$ × (V1 – V2) + V1 ... Do the same to A2 $VOUTA2 = \left(\frac{Rf}{Ra}\right) \times (V2 - V1) + V2$ VOUTA1 and VOUTA2 feed into A3 (difference amplifier) Assume R1=R3 and R2=R4, then $VOUTA3 = \left(\frac{R2}{R1}\right) \times (VOUTA2 - VOUTA1) + Ref$

10

3 amp IA derivation – Combined

$$VOUTA1 = \frac{Rf}{Rg} \times (V1 - V2) + VOUTA2 = \frac{Rf}{Rg} \times (V2 - V1) + VOUTA3 = \frac{R2}{R1} \times (VOUTA2 - VOUTA2)$$

Substitute the equations for VOUTA1 and VOUTA2 into VOUTA3: $VOUT = \frac{R2}{R2} \times \left(\left(\frac{Rf}{Rg} \times (V1 - V2) + V1 \right) - \left(\frac{Rf}{Rg} \times (V2 - V1) + V2 \right) \right) + Ref$

Simplifying...

$$VOUT = (V2 - V1) \times \frac{R2}{R1} \times \left(1 + \frac{2R}{Rg}\right)$$

Where the differential gain, Ad is $\frac{R2}{R1} \times \left(1 + \frac{2Rf}{Rg}\right)$

V1 V2 (A1) + Ref (A2 into VOUTA3: (V2 - V1) + V2)) + Ref

 $\left(\frac{df}{d}\right) + Ref$

3 amp IA – Circuit goal

Circuit component goal:

Match R1 to R2, R3 and R4 to form a unity gain difference amplifier

Match Rf1 and Rf2; feedback resistors which interact with Rg to alter the gain of the input signal (Vd)

Transfer function recap:

$$Ad = \frac{R2}{R1} \times \left(1 + \frac{2}{R}\right)$$

 $Vout = Ad \times Vd + Ref$, where Vd = V2 - V1

Amplifier roles:

A1 & A2 operate with differential gain to amplify the signal

A3 unity gain difference amplifier

RfRg

Instrumentation amplifier – Idealized model

Two main characteristics of an instrumentation amplifier:

- 1. Amplifies the signals that differ between the two inputs
- 2. Rejects the signals that are the same (common) to both inputs

Idealized model – Common mode voltage analysis

Apply a common mode voltage:

When a common-mode voltage is applied to inputs of A1 and A2, either side of Rg will be equal.

IRg = IRf1 = IRf2 = 0A

Common mode signals will be passed through input buffers A1 and A2 at unity gain, but differential voltages will be amplified by:

The second stage difference amplifier rejects this common mode voltage and passes only the differential voltage.

CMRR – How gain effects CMRR

$$CMRR\left(rac{V}{V}
ight) = rac{differential}{common\ model}$$

When gain is increased by Rg:

- the differential signal will be increased
- but the common-mode error will not

 $\frac{A_d}{A_{cM}}$ will increase so CMRR will theoretically increase in direct proportion to gain

ial gain ode gain

3 amp IA – Linear behavior analysis

16

Input and output – RRIO

Rail-to-Rail input and output amplifiers

- Rail-to-Rail input (RRI) amplifiers have input ranges which extend to and sometimes beyond the rail
- Rail-to-Rail output (RRO) amplifiers have output swings *near* the rails

17

3 amp IA – Linear behavior analysis

RRI: to and beyond the rail: $0V \le Vin \le 5V$ **RRO:** *near* the rail: $0.1V \le Vout \le 4.9V$

Let us analyze each amplifier individually:

A1:

- Input = 3V, this is within $0V \le Vin \le 5V$ •
- **Output = 2V**, this is within $0.1V \le Vout \le 4.9V$ •

A2:

- Input = 4V, this is within $0V \le Vin \le 5V$ •
- **Output = 5V**, this is **NOT** within $0.1V \le Vout \le 4.9V$ •

$$VOUTA1 = \frac{Rf}{Rg} \times (V1 - V2) + V1$$
$$VOUTA2 = \frac{Rf}{Rg} \times (V2 - V1) + V2$$
$$VOUTA3 = \frac{R2}{R1} \times (VOUTA2 - VOUTA1) + Ref$$

3 amp IA – Boundary plot

Boundary plots graphically show a designer the usable range of an IA by analyzing the internal nodes.

Analog engineer's calculator → INA VCM vs Vout

TEXAS INSTRUMENTS

3 amp IA with gain – Example

Assume the following conditions: Power supply = ±5V Reference voltage = 0V Vd = 10mV, VCM = 1V Expected Vout is 3V

Calculate gain: $\frac{\Delta Vout}{\Delta Vin} = \frac{3V}{10mV} = 300V/V$ Ad for a 3 amp IA:

$$Ad = \frac{R2}{R1} \times \left(1 + \frac{2Rf}{Rg}\right)$$
$$300 = \frac{40k}{40k} \times \left(1 + \frac{2 \times 25k}{Rg}\right)$$

Solve for $Rg = 167.2\Omega$

3 amp IA with gain – Example

Common mistakes – Current consumption

Current consumption of an IA is the sum of all load currents (i1, I2, and i3) in addition to the quiescent current and any loading on Vout.

- **i1**: between VOUTA1 and VOUTA2 through Rf1, Rg, and Rf2 and back through the power supplies.
- i2: between VOUT and VOUTA1 through R2 & R1, back through the power supplies.
- **i3**:between VOUTA2 and Ref through R3 & R4 and back through the power supplies.

<u>Analog engineer's calculator \rightarrow IA Current Consumption</u>

Common mistakes – Driving the Ref pin

Common mistakes – Driving the Ref pin cont'd

Instrumentation amplifier topologies – 3 amp summary

Amplifiers A1 and A2:

- balanced input balanced output stage •
- amplifies the differential signal put passes • the common mode signal without amplification.
- Responsible for the high input impedance •

Amplifier A3:

- forms the second stage of this design as a difference amplifier
- largely removes the common mode signal. ٠

Summary:

If you have an application where you have high impedance sources and high common mode voltages, consider a three-amp IA topology.

Thanks for your time!

To find more Instrumentation Amplifier technical resources and search products, visit <u>ti.com/inas</u>

27

Quiz: Instrumentation Amplifier (A) topologies: three-amp TI Precision Labs – Instrumentation Amplifiers

Presented by Tamara Alani Prepared by Tamara Alani

Quiz: (IA) topologies: three-amp || Question

- 1. What are two challenges associated with the discrete one-amp IA topology?
 - The one-amp IA consumes more power a)
 - The one-amp IA has low input impedance b)
 - The one-amp IA must have precision-C) matched resistors for high accuracy
 - d) The one-amp IA has fixed gain
 - The one-amp IA can only be used e) for mV-level input signals
 - **f**) b&e
 - c & a g)
 - b & c h)

VS-

Vout

Quiz: (IA) topologies: three-amp || Answer

- 1. What are two challenges associated with the discrete one-amp IA topology?
 - a) The one-amp IA consumes more power
 - b) The one-amp IA has low input impedance
 - c) The one-amp IA must have precisionmatched resistors for high accuracy
 - d) The one-amp IA has fixed gain
 - e) The one-amp IA can only be used for mV-level input signals
 - f) b&e
 - g) c&a
 - h) b & c

Quiz: (IA) topologies: three-amp || Question

2. A one-amp IA has low input impedance. What is best way to resolve this?

- a) Add really large input resistors (R1 through R4)
- b) Put the amplifier in high gain
- c) Add two buffers at the inputs (V1 and V2)
- d) Find an amplifier with high input impedance

Quiz: (IA) topologies: three-amp || Answer

2. A one-amp IA has low input impedance. What is best way to resolve this?

- a) Add really large input resistors (R1 through R4)
- b) Put the amplifier in high gain
- c) Add two buffers at the inputs (V1 and V2) $_{V1}$
- d) Find an amplifier with high input impedance

Quiz: (IA) topologies: three-amp || Question

3. What is the gain equation for a three-amp IA?

a)
$$Gain = \frac{R2}{R1}$$

b) $Gain = Rg$
c) $Gain = \frac{R2}{R1} \times (Rg + 2 \times Rf)$
d) $Gain = \frac{R2}{R1} \times \left(1 + \frac{2 \times Rf}{Rg}\right)$

Quiz: (IA) topologies: three-amp || Answer

3. What is the gain equation for a three-amp IA?

a)
$$Gain = \frac{R2}{R1}$$

b) $Gain = Rg$
c) $Gain = \frac{R2}{R1} \times (Rg + 2 \times Rf)$
d) $Gain = \frac{R2}{R1} \times (1 + \frac{2 \times Rf}{Rg})$

Quiz: (IA) topologies: three-amp || Question

- 4. Using the INA333-Q1 (TI's Automotive, Zero-drift, low power IA), what value of Rg do you need to achieve a signal gain of 501V/V?
 - a) Rg = 100Ω
 - b) Rg = 200Ω
 - c) Rg = $200k\Omega$
 - d) Rg = 501Ω

Quiz: (IA) topologies: three-amp || Answer

- 4. Using the INA333-Q1 (TI's Automotive, Zero-drift, low power IA), what value of Rg do you need to achieve a signal gain of 501V/V?
 - a) Rg = 100Ω
 - b) Rg = 200Ω
 - $Rg = 200k\Omega$ C)
 - d) Rg = 501Ω

$$Gain = \left(1 + \frac{100k\Omega}{Rg}\right)$$

9

Quiz: (IA) topologies: three-amp || Question

- 5. What is the differential gain of the following circuit?
 - Gain = 5V/Va)
 - Gain = 2V/Vb)
 - Gain = 4V/VC)
 - Gain = 10V/Vd)

Quiz: (IA) topologies: three-amp || Answer

5. What is the differential gain of the following circuit?

Quiz: (IA) topologies: three-amp || Question 6. Using the INA818 (TI's high-precision, low-power IA with over-voltage

- Using the INA818 (TI's high-precision, low-power IA with over-v protection), create a boundary plot for the following conditions:
 - Voltage supply = $\pm 15V$
 - Gain = 100V/V
 - Reference = 0V
 - Common mode voltage = 8V

Use the INA Boundary Plot calculator in the **Analog Engineer's Calculator**: <u>https://www.ti.com/tool/ANALOG-ENGINEER-CALC</u>

Quiz: (IA) topologies: three-amp || Answer

- 6. Using the INA818 (TI's high-precision, low-power IA with over-voltage protection), create a boundary plot for the following conditions:
 - Voltage supply = $\pm 15V$
 - Gain = 100V/V
 - Reference = 0V
 - Common mode voltage = 8V

Use the INA Boundary Plot calculator in the Analog Engineer's Calculator: https://www.ti.com/tool/ANALOG-**ENGINEER-CALC**

Quiz: (IA) topologies: three-amp || Question

- 7. In theory, how does CMRR change with signal differential gain
 - When signal gain is increased, ACM / Ad will increase so CMRR will double a)
 - When signal gain is decreased, ACM / Ad will increase so CMRR will increase in b) direct proportion to gain
 - When signal gain is increased, Ad / ACM will increase so CMRR will increase by a C) factor of 1/2
 - d) When signal gain is increased, Ad / ACM will increase so CMRR will increase in direction proportion to gain

Quiz: (IA) topologies: three-amp || Answer

- 7. In theory, how does CMRR change with signal differential gain
 - When signal gain is increased, ACM / Ad will increase so CMRR will double a)
 - When signal gain is decreased, ACM / Ad will increase so CMRR will increase in b) direct proportion to gain
 - When signal gain is increased, Ad / ACM will increase so CMRR will increase by a C) factor of 1/2
 - d) When signal gain is increased, Ad / ACM will increase so CMRR will increase in direction proportion to gain

$$\frac{V}{V}$$

 $\left(\frac{V}{V}\right) = \frac{differential\ gain}{common\ mode\ gain} = \frac{A_d}{A_{CM}}$

Quiz: (IA) topologies: three-amp || Question

- 8. What are the typical magnitudes of input impedance for a 3 op amp IA?
 - a) 1 Ω to 1k Ω
 - b) 1k Ω to 100k Ω
 - c) 100k Ω to 10M Ω
 - d) $10^9 \Omega$ to $10^{12} \Omega$

n amp IA?

Quiz: (IA) topologies: three-amp || Answer

8. What are the typical magnitudes of input impedance for a 3 op amp IA?

- a) 1 Ω to 1k Ω
- b) 1k Ω to 100k Ω
- 100k Ω to 10M Ω C)
- d) $10^9 \Omega$ to $10^{12} \Omega$

Quiz: (IA) topologies: three-amp || Question

9. How do you determine the total current consumption of a 3 op amp IA?

- Look for the quiescent current specified in the datasheet and multiply it by 3 a)
- b) (Load currents (i1, I2, and i3) + quiescent current) multiplied by 3
- Load currents (i1, I2, and i3) + quiescent current + any loading on Vout C)
- (Load currents (i1, I2, and i3) + quiescent current d)

Quiz: (IA) topologies: three-amp || Answer

9. How do you determine the total current consumption of a 3 op amp IA?

- Look for the quiescent current specified in the datasheet and multiply it by 3 a)
- b) (Load currents (i1, I2, and i3) + quiescent current) multiplied by 3
- Load currents (i1, I2, and i3) + quiescent current + any loading on Vout C)
- (Load currents (i1, I2, and i3) + quiescent current d)

To find more Instrumentation Amplifier technical resources and search products, visit <u>ti.com/inas</u>

20