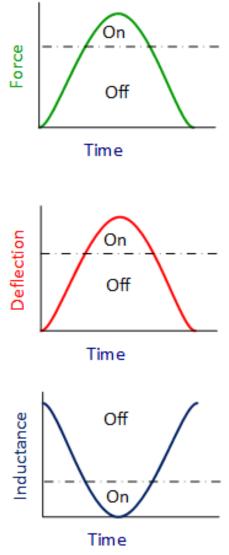
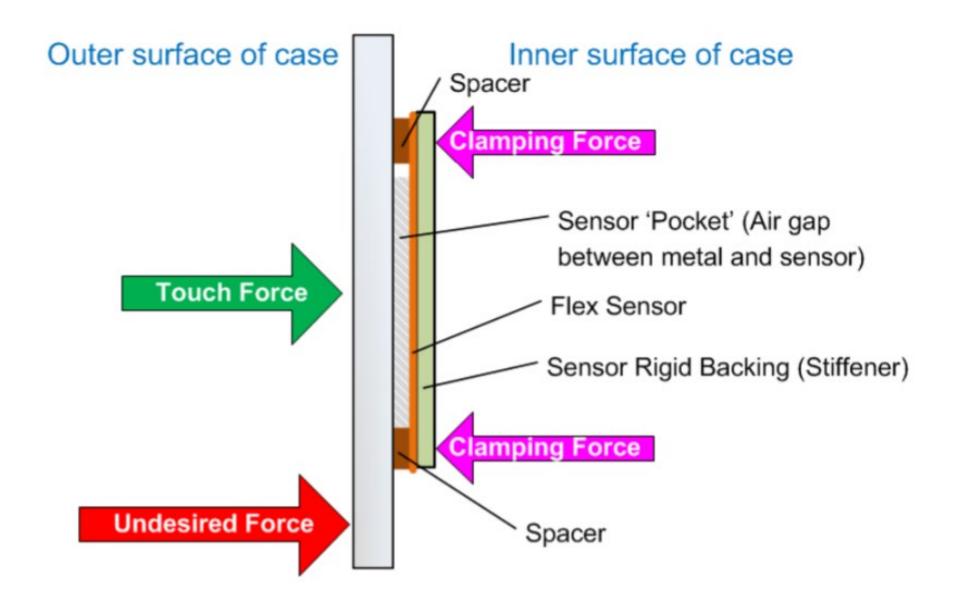

LDC Button Application TI Precision Labs – Inductive Sensing

Presented Justin Beigel



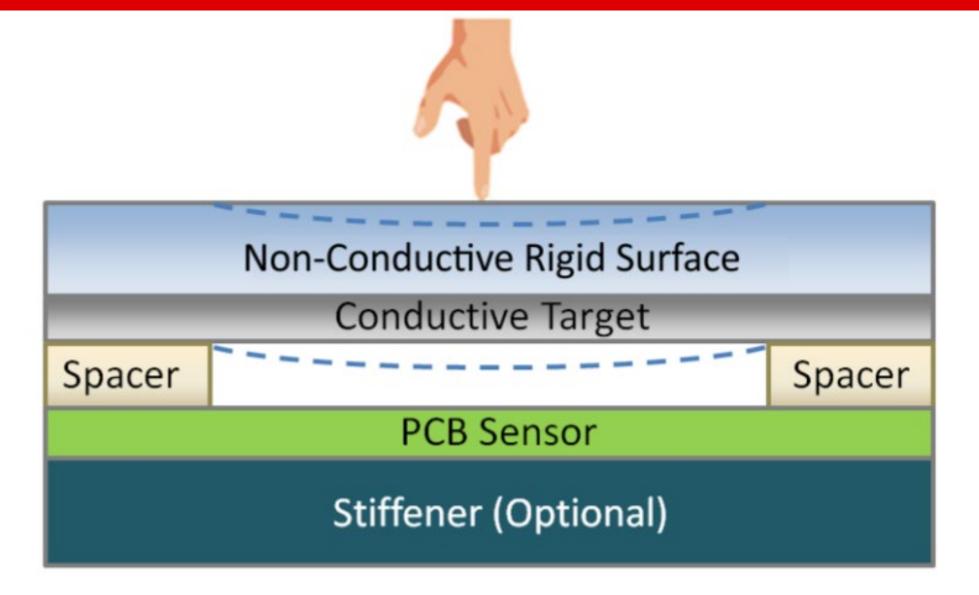
Inductive Touch Basic Concept

Deflection observed in the button surface is in the order of few hundred nanometers and has been exaggerated in the above drawing.


Inductive Touch Key Advantages

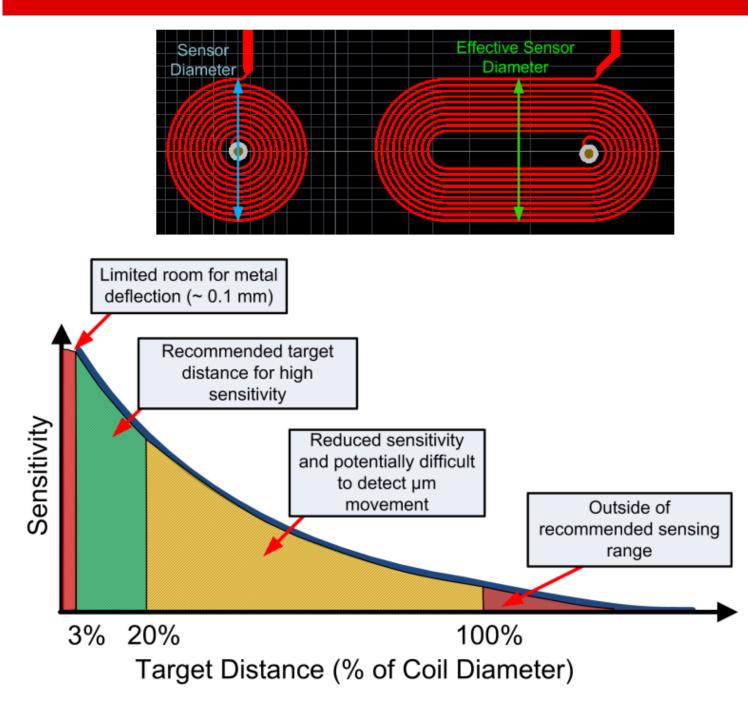
- Simplified design approach :
 - **Doesn't require cutouts or holes** in the button surface
 - Button surface doesn't need to be grounded
 - **Customizable** sensor design and shape.
 - More button placement options
 - Sensor fabrication uses existing manufacturing processes and materials
- Senses actual mechanical deflection of the button surface :
 - Provides a force response
 - \circ Works with gloves
 - o Immune to false button response
- Rugged functionality Highly resistant to environmental factors like dust, dirt, oil, and water.
- High reliability and extended life span does not include any moving components or contacts

Inductive Touch Mechanical Structure



4

Mechanical Structure for Non-Conductive Cases


For non-conductive case materials such as plastic, a metal insert can be added to create a conductive target.

Button Design Considerations

- Target
 - Height, Width, Skin Depth
- Coil
 - Circular vs Racetrack
 - Diameter
 - Inductance
 - Resistance
 - Parallel vs Series
- Target Distance vs. Coil Diameter

Design Tools and Resources

Research	Evaluate/Demo	Design		
LDC Training Videos	LDC Device EVMs	LDC Sensor Design (Rev. B)	E2 Ind	
Common Inductive and Capacitive Sensing Applications	LDC Coil EVMs Inductive Touch Buttons for wearables	App Note <u>LDC1xxx LDC</u> <u>Target Design</u> (Rev. A) App Note	E2 LDC Calculator Spreadsheet	
(Rev. A)			FEMM Tool	
LDC Device Selection	LDC D and Re Design	eference	Device Datasheets	
Guide (Rev. C)	(TIDAs		EMI App Note	

Debug

2E – ductive ensing FAQ

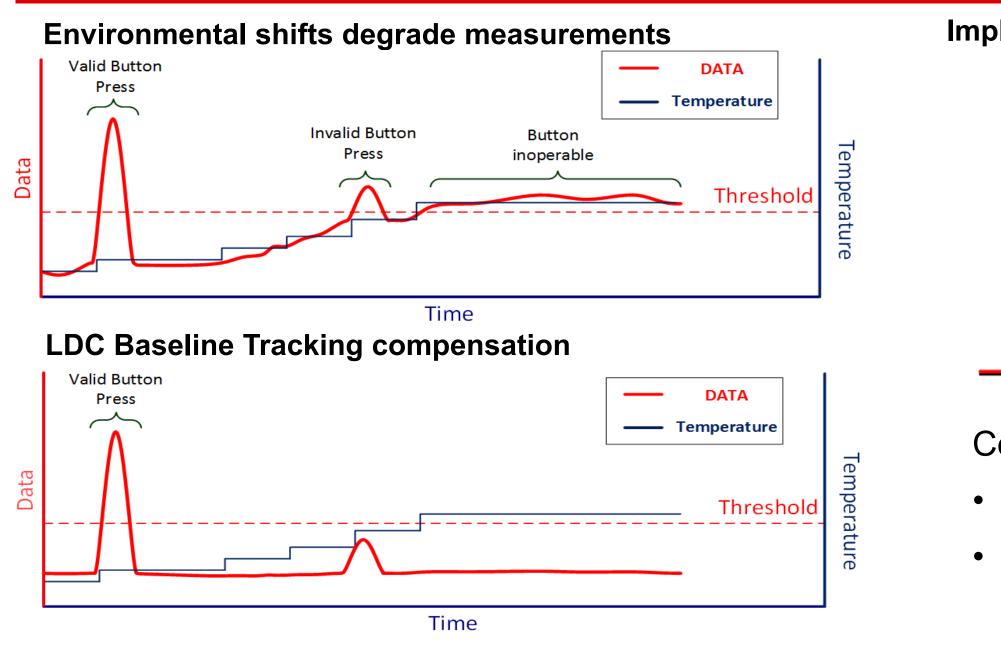
2E Forum

Design Tool Example

- Excel calculation spreadsheet
 - Support for different LDC devices
 - Sensor design and individual tabs
 - Helps design for target and sensor interaction

Take a look at this blog post for additional inform	nation			Commentaria a la commentaria de la comme
				Conner Layer 1
				layer 2 ->
			Layer 3 ->	
				$s \longrightarrow d_{in} w$.ayer 4 \longrightarrow
dout	c c			d _{out}
				.ayer 5 —>
				Copper Layer 6
		20F		Copper Layer 7 —>
Enter only in Yellow Fields (pull-down for mm or mil)		Click for	←Doubl	e-Click For Instructions
Results in Orange Fields		Instructions		Copper Layer 8 —>
		LC Sensor calcu	lations	
LDC Device		LDC2112/4		
Operating temperature	Т	22	°C	Enter operating temperature
Sensor capacitance	С	350.0	pF	Select LC tank capacitance
Layers	М	2	Layers	Number of layers on PCB board (1≤M≤8)
Turns (per layer)	Ν	9	Turns	Number of turns per layer
Outer diameter of the inductor	d _{out}	6.00	mm	Outer Diameter of the spiral inductor
Sensor Shape		Circular		
Long side of inductor	dL	4.00	mm	
spacing between traces	S	5.000	mil	Space between traces (mm or mil)
width of trace	w	5.000	mil	Width of the trace (mm or mil)
PCB thickness between 1st layer and 2nd layer	h12	0.040	mm	Space between layer 1 and 2 (mm or mil)
PCB thickness between 2nd layer and 3rd layer	h23	30.000	mm	Space between layer 2 and 3 (mm or mil)
PCB thickness between 3rd layer and 4th layer	h34	8.000	mm	Space between layer 3 and 4 (mm or mil)
PCB thickness between 4th layer and 5th layer	h45	8.000	mm	Space between layer 4 and 5 (mm or mil)
PCB thickness between 5th layer and 6th layer	h56	8.000	mm	Space between layer 5 and 6 (mm or mil)
PCB thickness between 6th layer and 7th layer	h67	1.575	mm	Space between layer 6 and 7 (mm or mil)
PCB thickness between 7th layer and 8th layer	h78	1.575	mm	Space between layer 7 and 8 (mm or mil)
Copper thickness	t	0.028	mm	Copper layer thickness (mm,Oz-Cu, or mil)

Design Tool Example – Cont.


reb unioniess between zur lager and our lager	1170	1.575		Space between layer / and o (min or min)
Copper thickness	t	0.028	mm	Copper layer thickness (mm,Oz-Cu, or mil)
Conductor Resistivity (at 20°C)	pr	1.68E-08	Ωm	Use 1.68e-08 for Copper
Conductor Resistivity temperature coef	pr_tc	0.393	%/°C	Use 0.393 for Copper
Conductor relative permeability	μ	1.00		Use 1.0 for Copper
Parasitic capacitance	Cpar	4.0	pF	Estimate - generally in the rage of 1 to 5 pf
Copper resistivity at operating temperature	pr_t	1.693E-08	Ωm	
Coil Fill Ratio	din/dout	0.24		0.2> din/dout >0.8 is recommended for highest Q
Inductor inner diameter	din	1.428	mm	Inner diameter of the spiral inductor (mm or mil)
Self inductance per layer	L	0.276	μН	
Total Inductance with no target	L _{TOTAL}	1.007	μН	
Sensor Operating Frequency no target	f_{RES}	8.430	MHz	
Rp with no Target	R _P	1.64	kΩ	
Q factor	Q	30.48		
Self resonant frequency (estimated)	SRF	79.309	MHz	SRF should be >1.25*Fsensor
Target Distance	D	0.300	mm	For aluminum target of at least 5 skin depths
Sensor Inductance from Target Interaction		0.375	μН	
Sensor Frequency with Target Interaction	f_{RES}	13.815	MHz	
Rp with Target Interation	R _P '	0.54	kΩ	
Q Factor with target	Q'	16.4		
Ccom Value (with Target)	Ccom	2.1< C <26.8	nF	

Spiral_Inductor_Designer (LDC2114_Config_tool (LDC0851_calc (LDC131x-LDC161x_Config (Encoder_Calc_Tool)

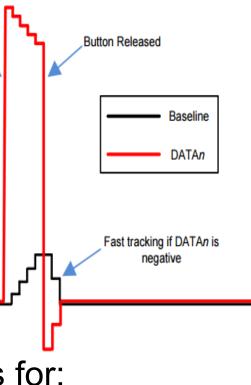
Baseline Tracking

Baseline Tracking for Environmental Factors

Implementation

Base Increment

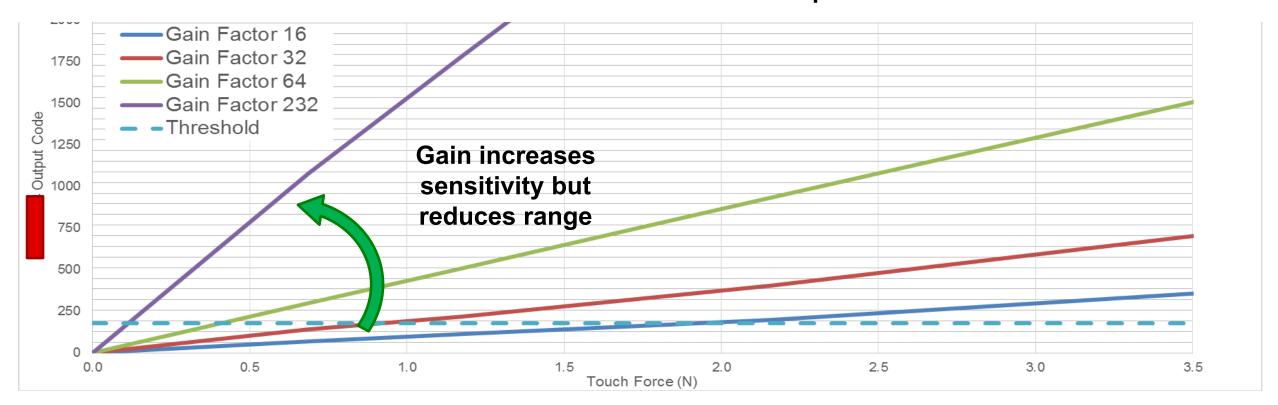
Button Pressed


Compensates for:

- etc.)

Permanent deformation of button surface (drops, dents

For environmental factors



Button Gain/Sensitivity

GAIN Configuration

A button press event is create when the data crosses the threshold.

- Gain Factor sets desired button trigger force. (help compensate for stronger or weaker metal deflection)
 - Across temperature Force vs LDC Net Data Response

Button sensitivity can be easily adjusted by GAIN:

A higher GAIN value results in a higher sensitivity.

To find more inductive sensor resources and products, visit:

https://www.ti.com/sensors/specialtysensors/inductive/products.html

12