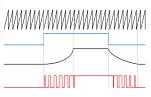
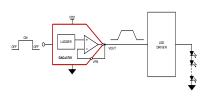
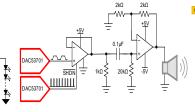
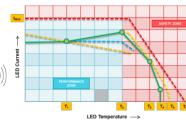
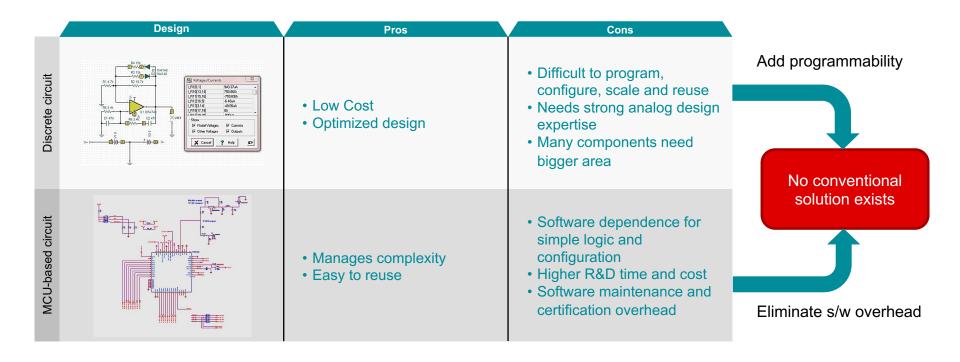

Smart DAC & Smart AFE – A New Building Block with New possibilities

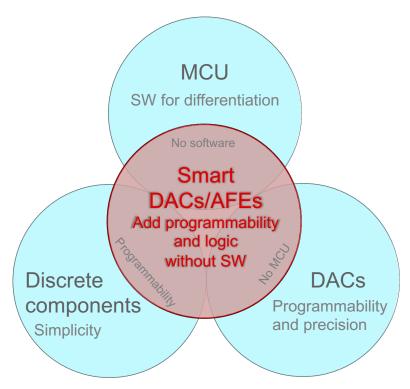

Precision Resistor 555 Timer Upgrade (Just By Programming NVM)


Smart PWM Generator (Without MCU) Control with GPIO trigger (Helps avoid trivial SW)

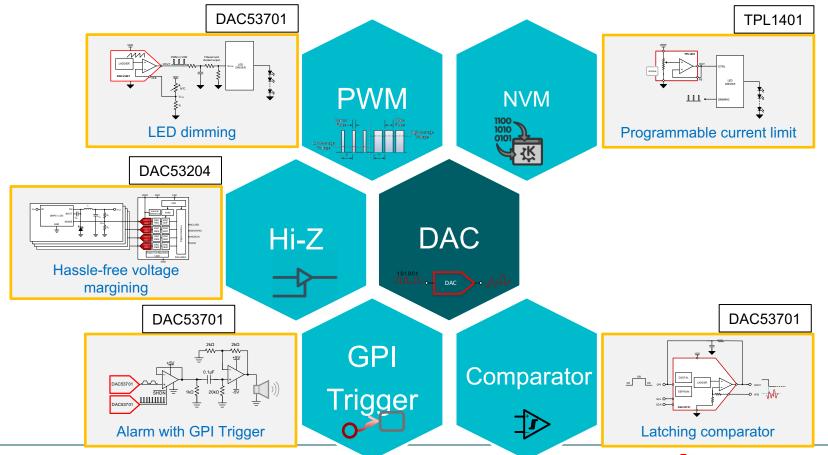

Medical Alarm (when SW fails)


Closed loop control (No SW)

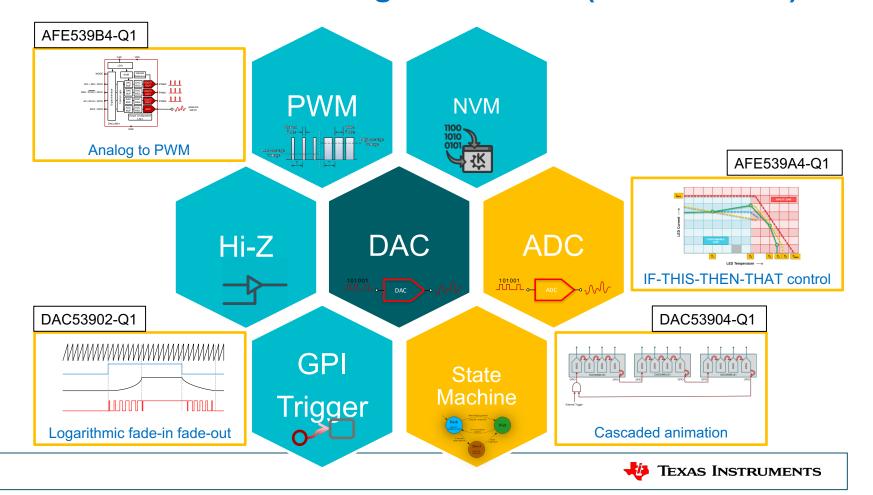




Current day challenges in system design



Why Smart DACs and Smart AFEs


Analog design is fun. Adding programmability is not ... Now you have Smart DACs and Smart AFEs

What is a Smart DAC? - control w/o software

TEXAS INSTRUMENTS

What is Smart AFE? - sensing and control (w/o software)

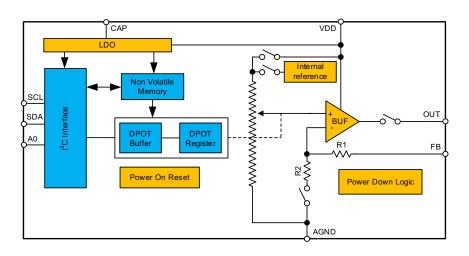
The Smart DAC Advantage

Add Programmability to Analog design without software

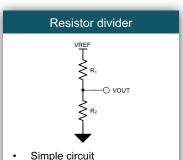
Delighted hardware engineer

Simplify software by removing SW dependence in HW control

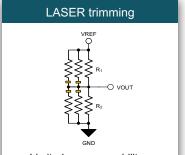
Delighted software engineer

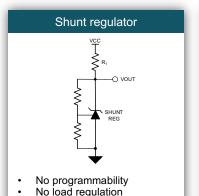

Reduce R&D and Product
Cost

Delighted program manager

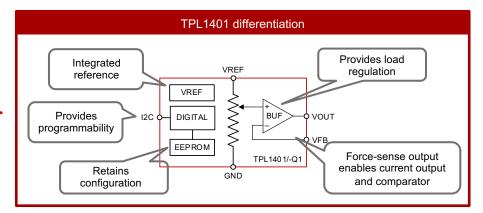

An example Smart DAC

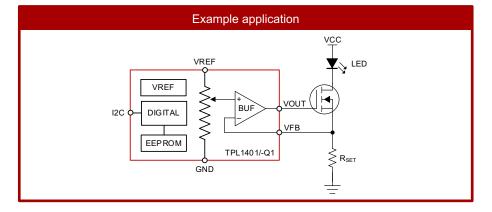
- Internal reference with 1% accuracy
- User programmable Nonvolatile memory
- Buffered wiper for improved load regulation
- Hi-Z or programmable start-up using NVM
- Lock bit to protect accidental writes to register or NVM
- I2C interface
- Wide Temperature range: -40°C to +125°C
- Small package WQFN-8 (2x2)


TPL1401

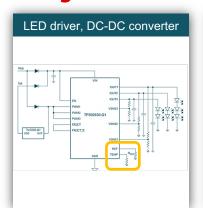

Generating a DC set-point

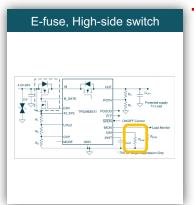
- No programmability
- No load regulation
- · External reference

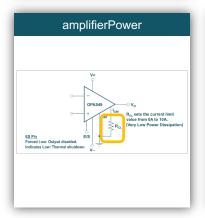

- Limited programmability
- No load regulation
- External reference

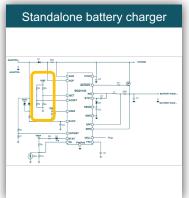


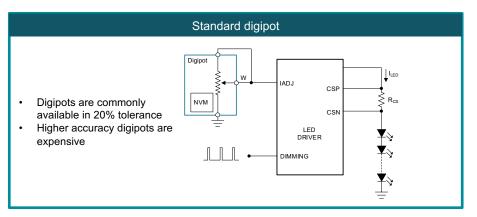
VCC R₁ R₂ SHUNT REG

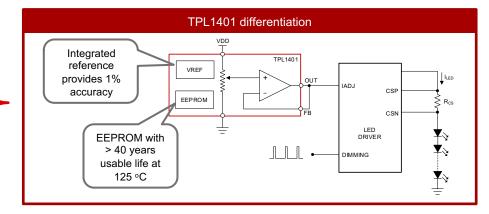

Limited programmability

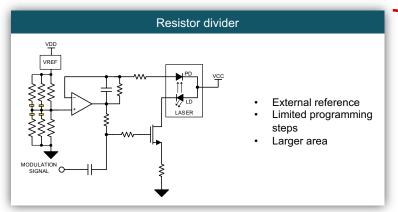

Load regulation

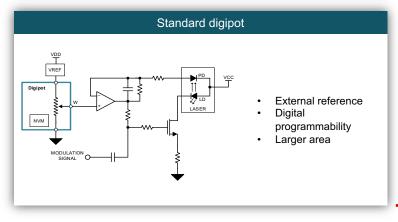


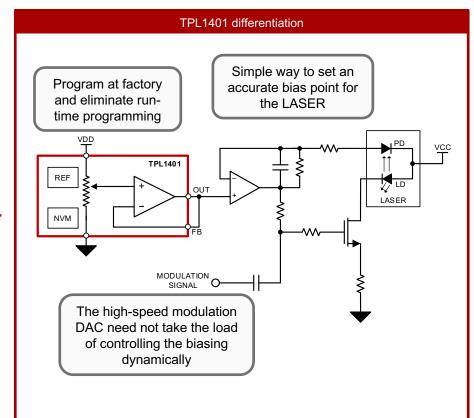



Adjustable current limit

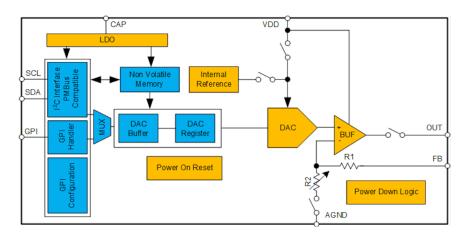




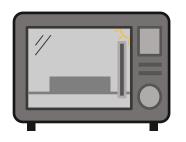


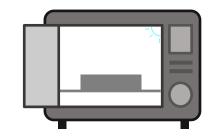


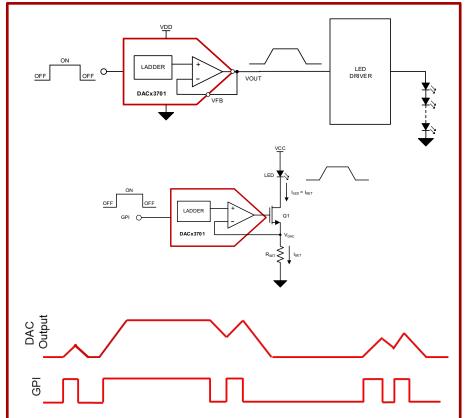
LASER diode analog power control (APC)



An example Smart DAC

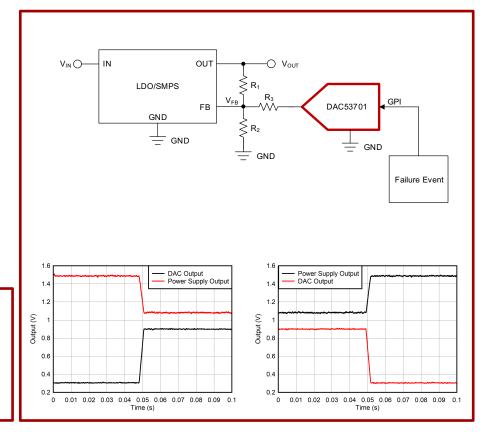

- GPIO configurable as power-down, PWM input, function trigger, or fade-in fade-out trigger
- User programmable Nonvolatile memory
- PWM output using free-running triangular waveform and FB pin
- I2C interface
- Wide Temperature range: -40°C to +125°C
- Small package WQFN-8 (2x2)


DAC53701-Q1



Appliance light fade-in fade-out

- GPI based fade-in fade-out
- Programmable slew rates from milliseconds to 5 seconds
- Programmable min and max output levels
- GPI can be directly connected to mechanical switch without MCU/software
- DAC can drive either an LED driver or directly drive LEDs using a MOSFET



Voltage margining and scaling

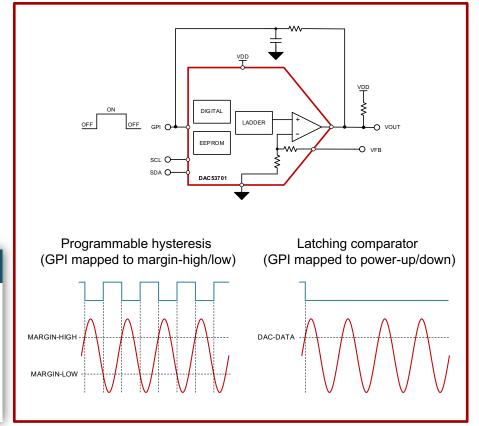
- Hi-Z power-down by default
- Digital slew rate control for glitch-free voltage scaling
- GPI to take the output to Hi-Z or other safe level when software crashes or during brownout
- I2C and PMBus compatible interface
- NVM for predictable power-up

$$\begin{split} I_{MARGIN} = & \left(\frac{V_{OUT} \times \left(1 + MARGIN \right) - V_{FB}}{R_1} \right) - I_{NOMINAL} \\ R_3 = & \frac{\left| V_{DAC} - V_{FB} \right|}{I_{MARGIN}} \end{split}$$

Programmable comparator

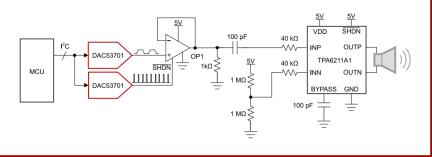
- Programmable hysteresis and latching functions independent of MCU
- 10-bit comparator threshold
- 10-bit hysteresis programmed using marginhigh and margin-low registers
- Latching comparator function
- EEPROM retention > 40 years at 125 °C operating temperature, suitable for industrial applications

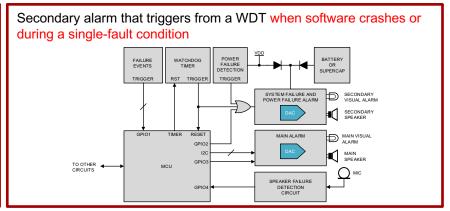
Programmable comparator

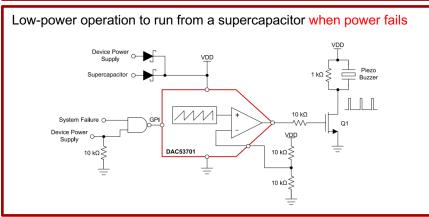

- Comparator threshold is programmed in DAC-DATA register
- GPI is unmapped

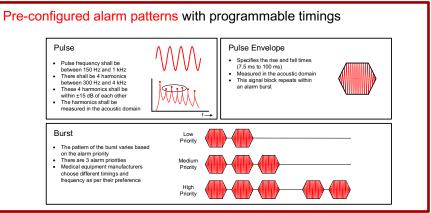
Programmable hysteresis

- GPI mapped to margin-high (GPI HIGH) and marginlow (GPI LOW)
 - DAC-DATA is same as either margin-high or margin-low
- DAC output is pulled up by a resistor to VDD


Latching comparator


- GPI mapped to power-up (GPI HIGH) and power-down to 10K (GPI LOW)
- DAC-DATA is the comparator threshold
 DAC output is pulled
- DAC output is pulle up by a resistor to VDD

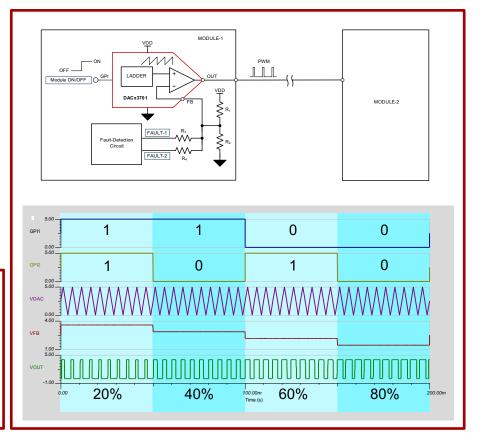



Medical alarm using DAC53701

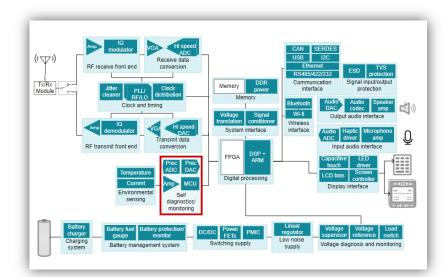
Say Goodbye to software criticality by offloading medical alarm to a programmable HW solution using Smart DACs

Analog to PWM converter

- NTC resistance or analog voltage to PWM conversion
- PWM interfaces needs only single-wire suitable for isolation barriers
- PWM duty cycle proportional to NTC resistance or voltage
- Factory programming of PWM frequency through triangular / sawtooth waveform in NVM
- No run-time software required


$$f_{TRIANGLE-WAVE} = \frac{1}{2 \times SLEW_RATE \times \left(\frac{MARGIN_HIGH-MARGIN_LOW+1}{CODE_STEP}\right)}$$

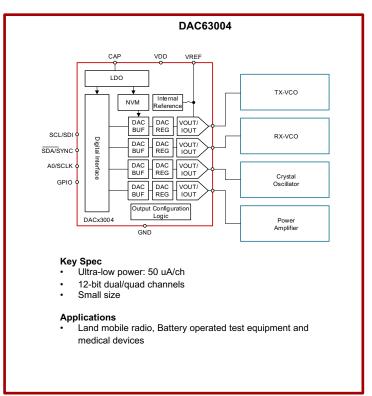
$$f_{SAWTOOTH-WAVE} = \frac{1}{SLEW_RATE \times \left(\frac{MARGIN_HIGH-MARGIN_LOW+1}{CODE_STEP}\right)}$$


Fault communication

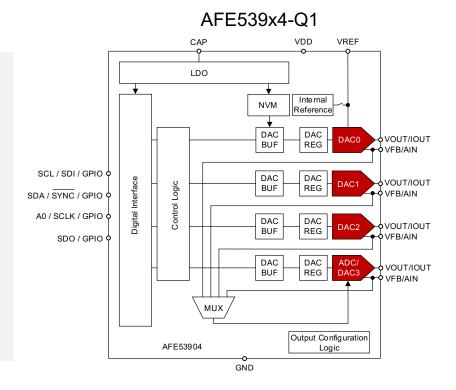
- Static fault signals are converted to analog signal by super-position
- 2 fault signals correspond to 4 possible PWM duty-cycles
- Software programmability of PWM frequency through triangular / sawtooth waveform
- No run-time software required

$$f_{TRIANGLE-WAVE} = \frac{1}{2 \times SLEW_RATE \times \left(\frac{MARGIN_HIGH-MARGIN_LOW+1}{CODE_STEP}\right)}$$

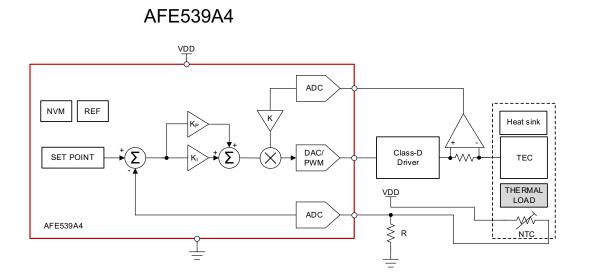
$$f_{SAWTOOTH-WAVE} = \frac{1}{SLEW_RATE \times \left(\frac{MARGIN_HIGH-MARGIN_LOW+1}{CODE_STEP}\right)}$$



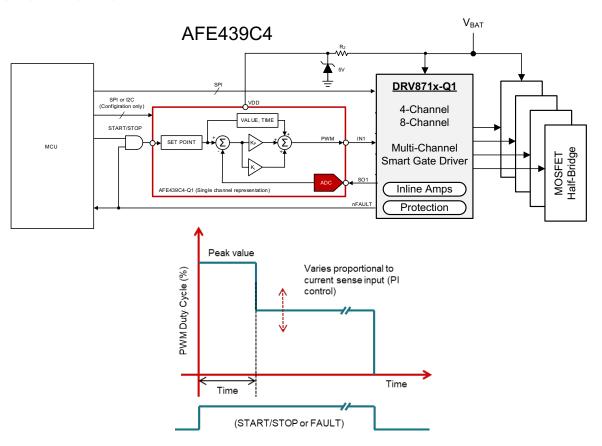
DAC63004: Ultra-low Power 12/10-bit DAC


Key Requirements:

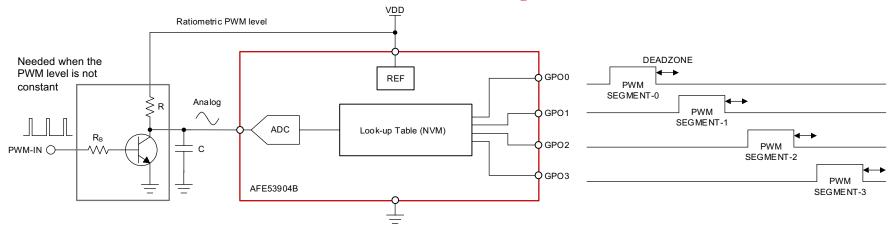
- 1. 4-channel
- 10-bit or 12-bit
- 3. Low-power


An example Smart analog frond end (AFE)

- User programmable Nonvolatile Memory (NVM/EEPROM)
- I2C and SPI mode auto-detection
- GPIO interface
- PWM output
- Hi-Z output during power-off condition
- 10-bit ADC mode for all channels
- Control logic that supports look-up table and closed-loop control
- Wide Temperature range: -40°C to +125°C
- Small package WQFN-16 (3x3)


Thermoelectric cooling (TEC) control

- Integrated DAC and ADC for closed-loop PI control w/o MCU
- PWM output to control external Hbridge
- Direct NTC interface to ADC
- TEC current sensing and compensation
- I2C/SPI interface for NVM programming at production
- Integrated reference and NVM
- No run-time software required



Solenoid valve control

- Programmable Peak-and-Hold control (2 independent loops)
- Integrated DAC and ADC for closed-loop PI control w/o MCU
- PWM output to control DRV871x
- Current sense from DRV871x to ADC
- GPIO based START/STOP command from MCU
- I2C/SPI interface for NVM programming at production
- Integrated reference and NVM
- No run-time software required

AFE439B4-Q1 PWM IO Expander

ADC0 Segment	ADC0 Range	GPO0 (1-bit)	GPO1 (1-bit)	GPO2 (1-bit)	GPO3 (1-bit)
SEGMENT0 (16-bit)	VALUE0 (8-bit) -> VALUE1 (8-bit)	HIGH/LOW	HIGH/LOW	HIGH/LOW	HIGH/LOW
SEGMENT1 (16-bit)	VALUE2 (8-bit) -> VALUE3 (8-bit)	HIGH/LOW	HIGH/LOW	HIGH/LOW	HIGH/LOW
SEGMENT2 (16-bit)	VALUE4 (8-bit) -> VALUE5 (8-bit)	HIGH/LOW	HIGH/LOW	HIGH/LOW	HIGH/LOW
SEGMENT3 (16-bit)	VALUE6 (8-bit) -> VALUE7 (8-bit)	HIGH/LOW	HIGH/LOW	HIGH/LOW	HIGH/LOW
DEADZONE	VALUE1 -> VALUE2, VALUE3 -> VALUE4, VALUE5 -> VALUE6, VALUE7 -> 100%	RETAIN/LOW	RETAIN/LOW	RETAIN/LOW	RETAIN/LOW
OFF-STATE	0% -> VALUE0	HIGH/LOW	HIGH/LOW	HIGH/LOW	HIGH/LOW

Smart DACs on Tl.com. Smart AFEs out soon...

Smart DACs

Increase control functions using smart digital-to-analog converters (DACs). Smart DACs are DACs or digipots with output buffer and nonvolatile memory capabilities. The advanced integrated features in smart DACs enable greater system performance and control without the use of software.

View featured smart DACs >

Uttama Kumar Sahu: uttama@ti.com

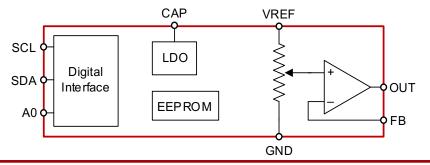
Gavin Bakshi: g-bakshi@ti.com

Abhi Muppiri: abhishekmuppiri@ti.com

Smart DAC: TPL1401 / TPL1401-Q1

256-tap High Accuracy DPOT with Buffered Wiper

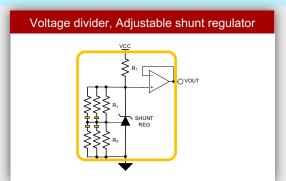
Features

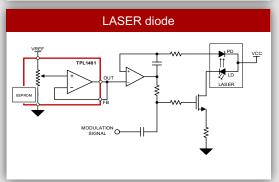

- 256-Position single channel
- 1% total accuracy
- Buffered wiper for improved load regulation
- FB pin for precision current sink applications
- User programmable Nonvolatile memory
- Lock bit to protect from accidental writes to the resistor value
- High impedance or programmable start-up using NVM
- I2C interface with 4 configurable addresses
- · Ground terminated resistor
- Internal 1.22-V reference
- External VREF: 1.8V to 5.5V
- 1.8V IO voltage support
- Temperature range: -40°C to +125°C

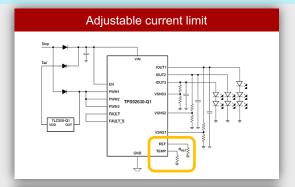
Applications

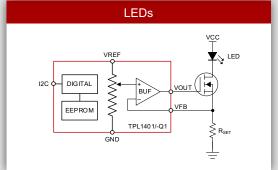
- · Precision Setpoint Thresholds
- LASER diode analog power control (APC)
- Adjustable Power Supplies
- Adjustable Gain Amplifiers and Offset Trimming
- Sensor Trimming and Calibration
- Precision Current Sink

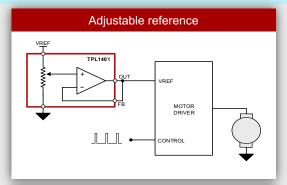
Benefits

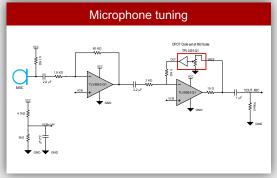

- Compact and low cost
- High initial accuracy
- Buffered wiper isolates the resistor string from the load impedance, ensuring high load regulation
- Replacement for non-programmable precision resistors
- · Ability to tweak with I2C interface




Similar Products TPL0401, TPL0501, TPL0102


TPL1401 application summary


- Losing yield at factory? Does the voltage need tuning at factory or at the field?
 - Does the PCB need HW change for every new revision?
 - Are you struggling to find the right way to generate a DC set-point?



TPL1401 guide to Find More Win More

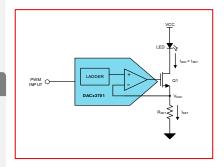
Find	Around these components or in these EEs	Ask following question	Win with TPL1401 because
Voltage divider or Adjustable shunt regulator	Signal limit comparators Over-current protection (OCP) Over-voltage protection (OVP) Window comparators	Does the voltage divider need a reference source? Is the voltage divider / shunt regulator connected to an unbuffered load? How fast does the comparator need to be?	TPL1401 has integrated reference and buffer for accuracy and load regulation. TPL1401 can do factory line trim to avoid yield loss and improve quality TPL1401 can be used as a programmable comparator with < 100us response time
Adjustable current limit	 Power amplifier E-fuse High-side switches DC-DC converters LED drivers Battery chargers 	 Are you using a resistor to ground or supply for the current limit? Would you prefer the current limit to be adjustable? 	 TPL1401 is programmable through I2C TPL1401 has an integrated EEPROM for predictable power up
Adjustable reference	 DC motor drivers ADCs Bridge circuits 	 Does the motor driver need micro-stepping or torque control? Does the ADC reference need to be adjustable? Does the bridge circuit need linearization? 	TPL1401 has integrated reference and buffer for accuracy and load regulation TPL1401 is programmable through I2C TPL1401 has an integrated EEPROM for predictable power up
LASER diodes	Vacuum cleaners, power tools with distance measurement Barcode scanners Barcode readers LASER scanners LASER markers	Does the system implement analog power control loop (APC) for the LASER diode? Is the EE cost and area sensitive?	TPL1401 has integrated reference and buffer for accuracy and load regulation TPL1401 is programmable through I2C TPL1401 has an integrated EEPROM for predictable power up TPL1401 is low-cost and small size
LEDs	USB chargers Pulse oximeters, IVD devices	 Does the LEDs need trimming at factory? Does the LED need accurate control? 	 TPL1401 has integrated reference and buffer for accuracy and load regulation. TPL1401 can do factory line trim to avoid yield loss and improve quality TPL1401 is low-cost and small size
Microphone	Microphone capsule Microphone arrays	 Does the microphone needs sensitivity tuning at factory? Does the microphone array need matching sensitivity among the microphones? 	 TPL1401 can be used as a programmable gain / attenuation device for audio applications TPL1401 can do factory line trim to avoid yield loss and improve quality TPL1401 is low-cost and small size

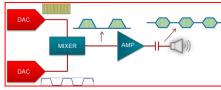
Smart DAC: DAC53701 / DAC43701/-Q1

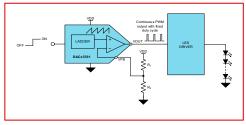
10/8 bit Single Channel DAC with GPIO Trigger for Automotive and Industrial Applications

Features

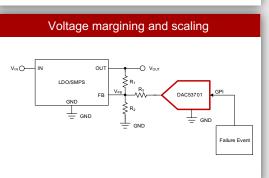
- GPIO configurable as power-down, PWM input, function trigger, or fade-in fade-out trigger
- User programmable Nonvolatile memory
- PWM output using free-running triangular waveform and VFB pin
- I2C interface
- Voltage output with flexible configuration
 - 1 LSB INL and DNL, Gain of 1.5, 2, and 3
- · Wide operating range
 - Power supply: 1.8 V to 5.5 V
 - Temperature range: -40°C to +125°C
- Internal 1.22-V reference
- Small packages
 - WQFN-8 (2x2)

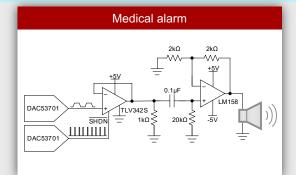

End-equipment

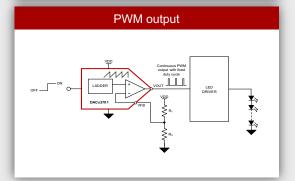

- Appliance door light fade-in fade-out
- Medical alarm
- Automotive license plate / reading lamp fade-in fade-out
- Automotive PWM based dimming for LED indicators
- Automotive STP/Tail lighting

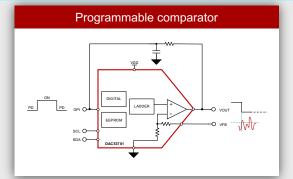

Benefits

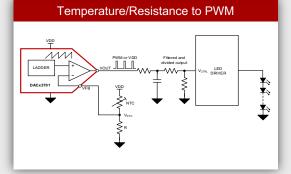
- Building block for Programmability without SW
- Configurable GPIO input to play waveform for fade-in fade-out
- · Accurate LED current setting






DAC53701 application summary


- Are you using an MCU just to create an adjustable PWM? Are you stuck with a 555 timer?
 - Are you avoiding simple fade-in fade-out effects in lighting because of cost?
 - Do you often notice fault management designs to be tricky?



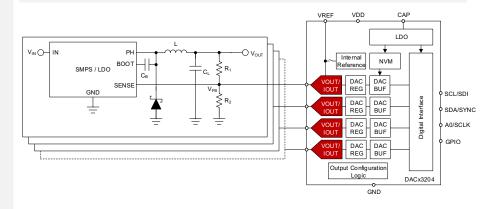
DAC53701 guide to Find More Win More

Find	Around these components or in these EEs	Ask following question	Win with DAC53701 because
Fade-in fade-out	Oven, appliances Car license plate Reading/dome lights	Do you prefer smooth dimming effects for your appliance door light? Are you burdened by non-trivial software maintenance and regulatory hassles? Do you require human eye response correction while dimming?	DAC53701 provides a GPI pin for fade-in fade-out operation with configurable timing t comes with an EEPROM that can be programmed during production using i2C DAC53701 can generate logarithmic slew using 2 diode and an external amplifier
Medical alarm	Ventilators Infusion pumps Patient monitors Hospital beds Dialysis machines Power/system failure alarm	Is your application software classified under risk management as you are driving the alarm from application software? Is the portability of the medical alarm circuit troubling you? Are you looking for a light-weight, portable, and configurable medical alarm?	DAC53701 has integrated medical alarm function The medical alarm can be triggered using the GPI. This is useful when the MCU or software fails DAC53701 takes only 200uA. It can easily work from battery or a supercap during power failure
Programmable comparator	LASER diode circuits Fuse failure detection (Grid infra) Programmable hysteresis Latching comparator	Do you need fault management in your system? Do you prefer less MCU involvement in the fault management?	 DAC53701 can be used as a programmable comparator for ~100us response time DAC53701 provides 10-bit programmable hysteresis It can work as a latching comparator In the PWM mode, DAC53701 can also transmit the status of the comparator to a long distance
Voltage margining and scaling	DC-DC voltage margining and scaling Margin-high/low testing Enterprise servers Datacom modules Fail safe mode	Does your ASIC/CPU need accurate voltage scaling? Do you want to have a fail safe mode without using an MCU?	DC53701 has Hi-Z power-down mode It has slew rate control It provides PMBus compatible I2C interface The GPI pin can be used as a fail safe input trigger The GPI pin can also be used as a margin-high/low toggle input
PWM output	STOP tail lighting control PWM expansion System status transmitter 555 timer replacement	Do you need matching intensity between the trunk and fender lights without additional harness? Do you need to translate the duty cycle of the master PWM for individual loads? Are you using an MCU for this? Do you need to transmit the status of a system in a robust but simple way? Do you need a simple way to generate a PWM signal?	DAC53701 can generate tunable PWM output to drive LED drivers The PWM can be triggered from the GPI DAC53701 can translate the duty cycle of an incoming PWM signal and generate a new PWM signal with the translation factor stored in the EEPROM
Resistance to PWM	Resistance to PWM conversion Temperature to PWM conversion LED thermal foldback Thermal switch for IGBT modules with integrated thermistor	Are you using an ADC or an MCU to convert a resistance or temperature to digital? How do you transmit an NTC value across isolation barrier? Are you using complex discrete circuit for thermal foldback of daytime running light (DRL)? How do you achieve thermal protection of IGBTs and indicate it to a processor? Are you using costly ADCs for this?	DAC53701 can take a resistance or NTC input and generate a PWM output It can achieve single-slope thermal foldback for DRL lighting without an MCU DAC53701 can act as a thermal switch in the programmable comparator mode without an MCU

SAMPLE NOW!

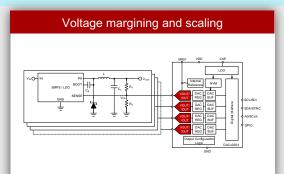
10 bit Quad DAC for Power Supply Margining and Adaptive Voltage Scaling (AVS)

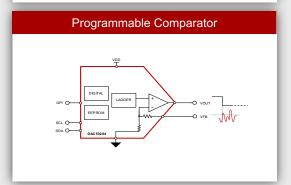
Features

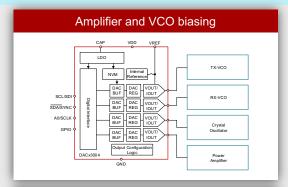

- Hi-Z output at power-off and during power-up
- PMBus compatible I2C interface
- Power rail brownout protection using PROTECT pin
- · Programmable slew rate control
- TOGGLE input for MCU-less margining
- · Low power operation
- I2C and SPI mode auto-detection
- Voltage output with flexible configuration
 - 1 LSB INL and DNL, Gain of 1, 1.5, 2, 3 and 4
- Current output
 - 1 LSB DNL (10-bit and 8-bit), 1 LSB INL (8-bit)
 - Configurable output ranges
 - 0 μA to 25 μA, ±25 μA, ±125 μA, ±250 μA
- Programmable output code limit
- · Wide operating range
 - Power supply: 1.8 V to 5.5 V
 - Temperature range: -40°C to +125°C
- Internal 1.22-V reference
- User programmable Nonvolatile memory
- Small packages
 - WQFN-16 (3x3)

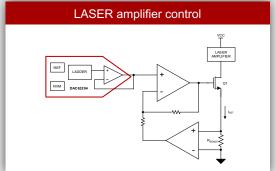
End-equipment

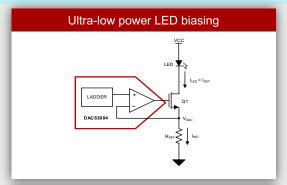
- · Optical line cards and optical modules
- · Rack server, Ethernet switches and routers
- PC and Notebooks, Tablet

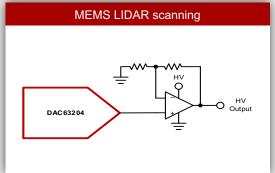

Benefits


- Eliminates external power-supply sequencing
- Enhances robustness with configurable PROTECT (GPIO) pin
- · Suitable for battery-operated applications
- Seamless integration into AVS applications




DAC53204 application summary


- Does your system require accurate bias points?
- Does your voltage margining circuit require a DAC that has Hi-Z output even during power-off?
 - Do you often notice fault management designs to be tricky?

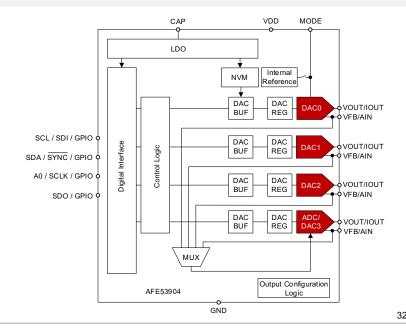


Smart AFE: AFE539x4

SAMPLE NOW!

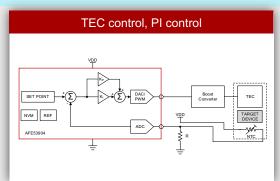
10 bit Quad Smart AFE – A new building block

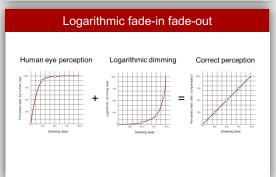
Features

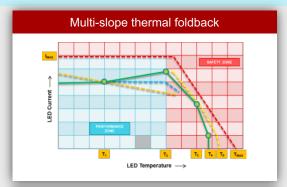

- User programmable Nonvolatile Memory (NVM/EEPROM)
- I2C and SPI mode auto-detection
- Internal 1.22-V reference
- Hi-Z output during power-off condition
- GPIO pin configurable as LDAC/PRESET/SDO/PDN/ALARM
- 10-bit ADC mode for all channels
- Control logic that supports feed-forward and closed-loop control
- · Voltage output with flexible configuration
 - 1 LSB INL and DNL, Gain of 1, 1.5, 2, 3 and 4
- Current output
 - 1 LSB INL (8-bit), 1 LSB DNL
 - Configurable output ranges
 - 0 μA to 25 μA, ±25 μA, ±125 μA, ±250 μA
- · Wide operating range
 - Power supply: 1.8 V to 5.5 V
 - Temperature range: -40°C to +125°C
- Small packages
 - WQFN-16 (3x3)

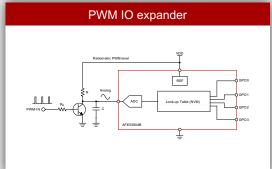
End-equipment

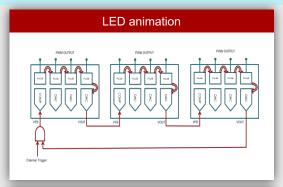
- · Ethernet switches and routers
- Handheld medical devices, test & measurement equipment
- · Automotive lighting
- · Land mobile radio

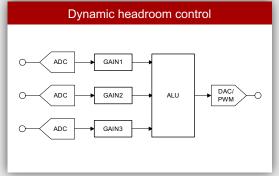

Benefits


- · High design-reuse with multiple digital interface and analog output options
- · Set-and-forget mode operation off-loads housekeeping MCU/EC
- Autonomous mode provides logic to analog circuits without software
- Ultra-low power enables longer run-time for battery-operated applications




AFE539x4 application summary


- Are you using an MCU to create simple control loops?
- Does your system have shortage of GPIOs or have the need for long-distance control over GPIOs?
 - Are you burdened by software to create LED animations?



©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com