Instrumentation Amplifier (1A) topologies: two-amp

TI Precision Labs - Instrumentation Amplifiers
Presented by Tamara Alani
Prepared by Tamara Alani

IA topologies - One amp recap

Difference amplifier output equation:

$$
V o u t=V d \times A d+\operatorname{Ref}
$$

Where Ad is the gain of the circuit
If $R 1=R 3$, and $R 2=R 4$, then $\operatorname{Ad}=\frac{R 2}{R 1}$
Challenges:

1. Precision relies on matched resistors
2. Low input impedance

IA topologies - Three amp recap

Buffer stage with gain and
high input impedance

Rf1 and Rf2 are absolutely matched for precise gain calculation:

$$
A d=1+\frac{2 R f}{R g}
$$

IA topologies - Three amp recap cont'd

Drawbacks:

Complex design: 3 amplifiers and 6 resistors.
This complexity may result in:

- larger die size,
- higher current consumption,
- higher manufacturing cost.

IA topologies - Two amp IA introduction

> Design simplicity:
> \quad - 2 amps, 4 resistors \rightarrow
> • smaller IC
> • lower current consumption
> • smaller manufacturing cost

Input impedance:

- High (typically $10^{9} \Omega$)

IA topologies - $\mathbf{2}$ amp IA derivation; A2 derivation

Derive output of A2 using superposition theorem:

Equation	V1	Ref
V1 *	Keep	Short
Ref *	Short	Keep
VO2 $=$ V2 $^{*}+$ Ref *		

Ground Ref:

A2 looks like non-inverting configuration:

$$
V O 2=\left(1+\frac{R 4}{R 3}\right) \times V 1
$$

Equation V1*

IA topologies - 2 amp IA derivation; A2 derivation

Derive output of A2 using superposition theorem:

Equation	V1	Ref
V1 *	Keep	Short
Ref *	Short	Keep
VO2 $=$ V2 $^{*}+$ Ref *		

Ground V1:

A2 looks like inverting configuration:

$$
V 02=\left(-\frac{R 4}{R 3}\right) \times \operatorname{Ref}
$$

Equation Ref*

IA topologies - 2 amp IA derivation; A2 derivation

Derive output of A2 using superposition theorem:

Equation	V1*	Ref	
V1 *	Keep	Short	V1 ${ }^{*}=(1+\mathrm{R} 4 / \mathrm{R} 3) \times \mathrm{V} 1$
Ref *	Short	Keep	Ref $^{*}=(-R 4 / R 3) \times$ Ref
VO2 $=$ V1 $^{*}+$ Ref* *			

Combine equations V1* and Ref* to yield VO 2:

$$
V 02=\frac{-R 4}{R 3} \times \operatorname{Ref}+\left(1+\frac{R 4}{R 3}\right) \times V 1
$$

IA topologies - 2 amp IA derivation; A1 derivation

Derive output of A1 using superposition theorem:

Equation	V2	V02
V2 *	Keep	Short
VO2 *	Short	Keep
Vout $=$ V2 $^{*}+$ VO2 *		

Ground VO2:

Looks like non-inverting configuration,

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}\right) \times V 2
$$

Equation V2*

IA topologies - $\mathbf{2}$ amp IA derivation; A1 derivation

Derive output of A1 using superposition theorem:

Equation	V2	VO2
V2 *	Keep	Short
VO2 *	Short	Keep
Vout $=$ V2 $^{*}+$ VO2 *		

Ground V2:

Looks like an inverting configuration,

$$
\text { Vout }=\frac{-R 2}{R 1} \times V O 2
$$

Equation VO2*

IA topologies - $\mathbf{2}$ amp IA derivation; A1 derivation

Derive output of A1 using superposition:

Equation	V2	VO2	
V2 *	Keep	Short	V2 $^{*}=\left(1+\frac{R 2}{R 1}\right) \times V 2$
VO2 *	Short	Keep	VO2 $^{*}=\frac{-R 2}{R 1} \times V 02$
Vout $=$ V2 $^{*}+$ VO2 *			

Combine V2* and VO2* to yield Vout:

$$
\begin{aligned}
& V o u t=\left(1+\frac{R 2}{R 1}\right) \times V 1-\frac{R 2}{R 1} \times V O 2(\text { eq } 1) \\
& V O 2=\frac{-R 4}{R 3} \times R e f+\left(1+\frac{R 4}{R 3}\right) \times V 1(\mathrm{eq} 2)
\end{aligned}
$$

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}\right) \times V 2-\frac{R 2}{R 1} \times\left[\frac{-R 4}{R 3} \times R e f+\left(1+\frac{R 4}{R 3}\right) \times V 1\right]
$$

IA topologies - 2 amp IA derivation; simplified

Vout $=\left(1+\frac{R 2}{R 1}\right) \times V 2-\frac{R 2}{R 1} \times\left[\frac{-R 4}{R 3} \times R e f+\left(1+\frac{R 4}{R 3}\right) \times V 1\right]$

Assuming R4 $=\mathrm{R} 1$ and R3 $=\mathrm{R} 2$:

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}\right) \times V 2-\frac{R 2}{R 1} \times\left[\frac{-R 1}{R 2} \times R e f+\left(1+\frac{R 1}{R 2}\right) \times V 1\right]
$$

Simplify...

2 amp IA - Gain control \& driving the Ref pin

Goal: Set the gain of the entire circuit with one additional resistor

Adding resistor Rg yields the following output equation:

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}\right) \times(\mathrm{V} 2-\mathrm{V} 1)+\mathrm{Ref}
$$

Resistor matching recap:

Aim for R4 = R1 and R3 = R2
In an integrated solution, R1, R2, R3, and R4 are absolutely matched in production.

Reference voltage recap:

Drive with low-impedance source, such as a buffer or voltage reference

2 amp IA - ACM analysis and performance

Common mode gain $=A_{C M}=\frac{V_{O C M}}{V_{C M}} \ll \mathbf{1}$
Apply a 1 V VCM (1V at V1 and V2)
Assume:

- Ref is grounded
- R1, R2, R3, R4 and Rg = $1 \mathrm{k} \Omega$

If $\mathrm{V} 1=1 \mathrm{~V} \rightarrow \mathrm{~V} 1$ ' $=1 \mathrm{~V}$:

- Current flowing through $\mathrm{R} 3=1 \mathrm{~V} / 1 \mathrm{k} \Omega=1 \mathrm{~mA}$

If $\mathrm{V} 2=1 \mathrm{~V} \rightarrow \mathrm{~V} 2$ ' $=1 \mathrm{~V}$:
$-\mathrm{V} 1^{\prime}=\mathrm{V} 2^{\prime}=1 \mathrm{~V}$, there is no current flowing through Rg , so $\mathrm{iRg}=0 \mathrm{~A}$

- $\mathrm{iR} 4=\mathrm{iR} 3+\mathrm{iRg}=1 \mathrm{~mA}$,
- Voltage drop across R 4 is 1 V , so $\mathrm{VO}=2 \mathrm{~V}$

2 amp IA - ACM analysis and performance cont'd

$$
\mathrm{VO} 2=2 \mathrm{~V} \text { and } \mathrm{V} 2^{\prime}=1 \mathrm{~V}:
$$

- current flowing through R 1 is $1 \mathrm{~V} / 1 \mathrm{k} \Omega=1 \mathrm{~mA}$ $i R 2=i R g+1 R 1=1 m A$
Voltage drop across R 2 is 1 V , so Vout $=0 \mathrm{~V}$

The two-amp IA was able to reject the common mode voltage (VCM)

2 amp IA topology drawbacks - Gain

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}\right) \times(\mathrm{V} 2-\mathrm{V} 1)+\mathrm{Ref}
$$

$\mathrm{Ad}=$ differential gain $=1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}$
$\mathrm{Vd}=$ differential voltage $=\mathrm{V} 2-\mathrm{V} 1$
Ref $=$ reference voltage, level shifting term

Drawback:

- Ad cannot be $1 \mathrm{~V} / \mathrm{V}$ due to the addition of 1 in the gain equation: $1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}$

2 amp IA topology drawbacks - Headroom

Vout $=\left(1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}\right) \times(\mathrm{V} 1-\mathrm{V} 2)+\mathrm{Ref}$

Drawback:

- Headroom:
- Low gain: If R4 >> R3, A2 will saturate if V1 VCM is too high, leaving no headroom for A 2 to amplify the wanted signal
- High gain: If R4 << R3, there is more headroom at VO2, allowing for higher VCM
*Note: Ref $=0 \mathrm{~V}$

2 amp IA topology drawbacks - Headroom cont'd

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}\right) \times(\mathrm{V} d)+\text { Ref }
$$

Low gain example: R4 >> R3
Assume A1 and A2 are powered by $\pm 15 \mathrm{~V}$ supplies $\mathrm{Ad}=1.1 \mathrm{~V} / \mathrm{V}, \mathrm{Vd}=1 \mathrm{~V}$
$\mathrm{VCM}=5 \mathrm{~V}$, Ref $=0 \mathrm{~V}$
Expected output Vout $=\mathrm{Ad} \times \mathrm{Vd}+\operatorname{Ref}=1.1 \mathrm{~V}$

High gain example: R4 << R3
Assume A1 and A2 are powered by $\pm 15 \mathrm{~V}$ supplies
$\mathrm{Ad}=11 \mathrm{~V} / \mathrm{V}, \mathrm{Vd}=1 \mathrm{~V}$
$\mathrm{VCM}=5 \mathrm{~V}$, Ref $=0 \mathrm{~V}$
Expected output Vout $=\mathrm{Ad} \times \mathrm{Vd}+$ Ref $=11 \mathrm{~V}$

2 amp IA topology drawbacks - Headroom cont'd

$$
\text { Vout }=\left(1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}\right) \times(\mathrm{Vd})+\operatorname{Ref}
$$

A 1 and $\mathrm{A} 2: \pm 15 \mathrm{~V}$ supplies, RRIO
$\mathrm{Ad}=1.1 \mathrm{~V} / \mathrm{V}, \mathrm{Vd}=1 \mathrm{~V}, \mathrm{VCM}=5 \mathrm{~V}$, Ref $=0 \mathrm{~V}$
Expected output Vout $=\mathrm{Ad} \times \mathrm{Vd}+$ Ref $=1.1 \mathrm{~V}$
$\mathrm{VO} 2=49.5 \mathrm{~V}$
Vout != 1.1V

A1 and A2: $\pm 15 \mathrm{~V}$ supplies, RRIO
$\mathrm{Ad}=11 \mathrm{~V} / \mathrm{V}, \mathrm{Vd}=1 \mathrm{~V}, \mathrm{VCM}=5 \mathrm{~V}$, Ref $=0 \mathrm{~V}$
Expected output Vout $=\mathrm{Ad} \times \mathrm{Vd}+$ Ref $=11 \mathrm{~V}$
$\mathrm{VO}=4.95 \mathrm{~V}$
VOUT $=11 \mathrm{~V}$

2 amp IA topology drawbacks - Headroom cont'd

Low gain: R4 >> R3

- A1 and A2: $\pm 15 \mathrm{~V}$ supplies, RRIO
- Differential gain $(\mathrm{Ad})=1.1 \mathrm{~V} / \mathrm{V}$
- Differential voltage (Vd) = 1V
- Common mode voltage $(\mathrm{VCM})=5 \mathrm{~V}$
- Reference voltage (Ref) $=4 \mathrm{~V}$

Expected output:

Vout $=A d \times V d+\operatorname{Ref}=5.1 \mathrm{~V}$
$\mathrm{VO} 2=9.5 \mathrm{~V}$
Vout $=5.1 \mathrm{~V}$
Vout $=\left(1+\frac{R 2}{R 1}+\frac{2 \times R 2}{R g}\right) \times(\mathrm{V} d)+\operatorname{Ref}$

2 amp IA vs 3 amp IA - Headroom

$\mathrm{Ad}=1.1 \mathrm{~V} / \mathrm{V}, \mathrm{Vd}=1 \mathrm{~V}, \mathrm{VCM}=5 \mathrm{~V}$ Ref $=0 \mathrm{~V}$ or 4 V
Expected Vout $=1.1 \mathrm{~V}$ or 5.1 V

2 amp IA topology drawbacks - AC CMRR

Drawback:

- AC CMRR:
- Path from V1 to Vout has an additional phase shift of A2

Example:

Assume we apply VCM at FCM to V1 and V2.
Expected common mode error $=0 \mathrm{~V}$ which means A1 needs to see 0 difference between V2 and VO2.

Phase shift introduced by A2 causes the phase of VO2 to lag behind V2 \rightarrow frequencydependent common mode voltage error at Vout

2 amp IA - Example

Assume the following conditions:
Voltage supplies $= \pm 10 \mathrm{~V}$, Ref $=0 \mathrm{~V}$
$\mathrm{Vd}=10 \mathrm{mV}, \mathrm{VCM}=2 \mathrm{~V}$
Expected Vout $=3 \mathrm{~V}$

4 design steps:

1. Determine gain required
2. Find IA \& check boundary plot
3. Determine Rg required
4. Build and simulate with confidence

2 Amp IA - Example cont'd

1. Determine gain required

$$
\text { Gain }=\frac{\Delta V o u t}{\Delta V i n}=\frac{3 \mathrm{~V}}{10 \mathrm{mV}}=300 \mathrm{~V} / \mathrm{V}
$$

2. Find IA \& check boundary plot IA selected: INA126
Plug in supply, gain, ref and VCM

Make sure our expected input \& output voltages are within range

Analog engineer's calculator \rightarrow INA VCM vs Vout

2 amp IA - Example cont'd

3. Determine Rg required

INA126 datasheet \rightarrow Gain $=5+\frac{80 k}{R g} \rightarrow \mathrm{Rg}=271 \Omega$

4. Build and simulate with confidence

2 amp IA - Summary of benefits and drawbacks

Benefits:

- Fewer resistors, must need to be well matched \rightarrow pick an integrated IA
- Fewer amplifiers \rightarrow lower cost
- High input impedance

Drawbacks:

- Minimum gain limitation (> 1V/V minimum)
- Gain vs headroom
- CMRR vs frequency
- Common mode voltage must be within the power supply rails

Thanks for your time! Please try the quiz.

To find more Instrumentation Amplifier technical resources and search products, visit ti.com/inas

Quiz: Instrumentation Amplitier (1A topologies: two-amp

TI Precision Labs - Instrumentation Amplifiers
Presented by Tamara Alani
Prepared by Tamara Alani

Quiz: (IA) topologies: two-amp || Question

1. What are some challenges associated with the two-amp IA topology? Select all that apply.
a) The path from V1 to Vout has an additional phase shift of A 2
a) The two-amp IA must be configured in gains $>1 \mathrm{~V} / \mathrm{V}$
a) The two-amp IA consumes more power
b) There is trade-off between VCM and Ref to Gain

Quiz: (IA) topologies: two-amp || Answer

1. What are some challenges associated with the two-amp IA topology? Select all that apply.
a) The path from V1 to Vout has an additional phase shift of A2
a) The two-amp IA must be configured in gains > $1 \mathrm{~V} / \mathrm{V}$
a) The two-amp IA consumes more power
b) There is trade-off between VCM and Ref to Gain

Quiz: (IA) topologies: three-amp || Question

2. Which of the following statements is false regarding the reference pin on a two-amp IA?
a) The ref pin must be driven by a low-impedance source
b) The ref pin is used to level-shift the output of the IA
c) The ref pin should be able to source and sink current
d) The ref pin may be driven by a resistor divider so long as the resistors are low tolerance

Quiz: (IA) topologies: two-amp || Answer

2. Which of the following statements is false regarding the reference pin on a two-amp IA?
a) The ref pin must be driven by a low-impedance source
b) The ref pin is used to level-shift the output of the IA
c) The ref pin should be able to source and sink current
d) The ref pin may be driven by a resistor divider so long as the resistors are low tolerance

Quiz: (IA) topologies: two-amp || Question

3. In a two-amp IA, which resistors do we aim to match?
a) $\mathrm{R} 4=\mathrm{R} 1$ and $\mathrm{R} 2=\mathrm{R} 3$
b) $R 4=R 3$ and $R 2=R 1$

Quiz: (IA) topologies: two-amp || Answer

3. In a two-amp IA, which resistors do we aim to match?
a) $\mathrm{R} 4=\mathrm{R} 1$ and $\mathrm{R} 2=\mathrm{R} 3$
b) $R 4=R 3$ and $R 2=R 1$

Quiz: (IA) topologies: three-amp || Question

4. What is the gain equation of a two-amp IA, assuming we match R4 to R1 and R3 to R2?
a) Gain $=1+2 \times R 2$
b) Gain $=1+\frac{R 1}{R 2}$
c) Gain $=1+\frac{R 2}{R 1}$
d) Gain $=2 \times(R 1+R 2)$

Go to the product datasheet:
https://www.ti.com/lit/ds/symlink/ina126.pdf

Quiz: (IA) topologies: two-amp || Answer

4. What is the gain equation of a two-amp IA, assuming we match R4 to R1 and R3 to R2?
a) Gain $=1+2 \times R 2$
b) Gain $=1+\frac{R 1}{R 2}$
c) Gain $=1+\frac{R 2}{R 1}$
d) Gain $=2 \times(R 1+R 2)$

Go to the product datasheet:
https://www.ti.com/lit/ds/symlink/ina126.pdf

Quiz: (IA) topologies: two-amp || Question

5. Using the INA126 (TI's micro-power IA), what value of Rg do you need to achieve a signal gain of $105 \mathrm{~V} / \mathrm{V}$?
a) $\mathrm{Rg}=100 \Omega$
b) $\mathrm{Rg}=200 \Omega$
c) $\mathrm{Rg}=800 \mathrm{k} \Omega$
d) $\mathrm{Rg}=800 \Omega$

Go to the product datasheet:
https://www.ti.com/lit/ds/symlink/ina126.pdf

Quiz: (IA) topologies: two-amp || Answer

5. Using the INA126 (TI's micro-power IA), what value of Rg do you need to achieve a signal gain of $105 \mathrm{~V} / \mathrm{V}$?
a) $\mathrm{Rg}=100 \Omega$
b) $\mathrm{Rg}=200 \Omega$
c) $\mathrm{Rg}=800 \mathrm{k} \Omega$
d) $\mathrm{Rg}=800 \Omega$

Go to the product datasheet:
https://www.ti.com/lit/ds/symlink/ina126.pdf

$$
\text { Gain }=\left(5+\frac{80 \mathrm{k} \Omega}{\mathrm{Rg}}\right)
$$

Quiz: (IA) topologies: two-amp || Question

6. What is the differential gain of the following circuit?
a) Gain $=1.1 \mathrm{~V} / \mathrm{V}$
b) Gain $=2 \mathrm{~V} / \mathrm{V}$
c) Gain $=0.1 \mathrm{~V} / \mathrm{V}$
d) Gain $=10 \mathrm{~V} / \mathrm{V}$

Quiz: (IA) topologies: two-amp || Answer

6. What is the differential gain of the following circuit?
a) Gain $=1.1 \mathrm{~V} / \mathrm{V}$
b) Gain $=2 \mathrm{~V} / \mathrm{V}$
c) Gain $=0.1 \mathrm{~V} / \mathrm{V}$
d) Gain $=10 \mathrm{~V} / \mathrm{V}$

Quiz: (IA) topologies: two-amp || Question

7. Using the INA156 (Tl's rail-to-rail output swing IA optimized for low-voltage, single-supply operation), create a boundary plot for the following conditions:
$-\quad$ Voltage supply $=5 \mathrm{~V}$ single supply

- Gain $=10 \mathrm{~V} / \mathrm{V}$
- Reference $=2.5 \mathrm{~V}$
- Common mode voltage $=2 \mathrm{~V}$

Use the INA Boundary Plot calculator in the Analog Engineer's Calculator:
https://www.ti.com/tool/ANALOG-ENGINEER-CALC

Quiz: (IA) topologies: two-amp || Answer

7. Using the INA156 (TI's rail-to-rail output swing IA optimized for low-voltage, single-supply operation), create a boundary plot for the following conditions:

- Voltage supply $=5 \mathrm{~V}$ single supply
- Gain $=10 \mathrm{~V} / \mathrm{V}$
- Reference $=2.5 \mathrm{~V}$
- Common mode voltage $=2 \mathrm{~V}$

Use the INA Boundary Plot calculator in the Analog Engineer's Calculator:
https://www.ti.com/tool/ANALOG-ENGINEER-CALC

Quiz: (IA) topologies: two-amp || Question

8. True or false: In an integrated two-amp IA, all resistors are absolutely matched in production

Quiz: (IA) topologies: two-amp || Answer

8. True or false: In an integrated two-amp IA, all resistors are absolutely matched in production

TRUE

Quiz: (IA) topologies: two-amp || Question

9. Which of the following statements is true regarding the relationship between Ref and VCM to Gain?
a) The further apart Ref is to VCM, lower gains can be achieved
b) The closer Ref is to VCM, lower gains can be achieved
c) If Ref $=\mathrm{VCM}$, gain $<1 \mathrm{~V} / \mathrm{V}$ can be achieved
d) If Ref \ll VCM, any gain can be achieved

Quiz: (IA) topologies: two-amp || Answer

9. Which of the following statements is true regarding the relationship between Ref and VCM to Gain?
a) The further apart Ref is to VCM, lower gains can be achieved
b) The closer Ref is to VCM, lower gains can be achieved
c) If Ref $=\mathrm{VCM}$, gain $<1 \mathrm{~V} / \mathrm{V}$ can be achieved
d) If Ref \ll VCM, any gain can be achieved

To find more Instrumentation Amplifier technical resources and search products, visit ti.com/inas

