Power supply considerations using TI MSP430 Microcontrollers

Dietmar Walther – CMCU Quality

Power Supply Considerations

Used example code

```
msp430x22x4_clks.c ×
#include <msp430.h>
int main(void)
 int i=0;
 P2DIR |= 0 \times 02;
                                        // P2.1 output direction
                                        // P2.1 = SMCLK
 P2SEL | = 0x02;
  P4OUT &= ~0x88;
                                      // P4.4 and P4.7 output direction
  P4DIR |= 0x88;
 WDTCTL = WDTPW + WDTHOLD;
                                        // Stop Watchdog Timer
 if (CALBC1 16MHZ==0xFF)
                                        // If calibration constant erased
  -
   while(1):
                                         // do not load, trap CPU!!
  F.
 P4OUT |= 0 \times 08;
  DCOCTL = 0;
                                         // Select lowest DCOx and MODx settings
  BCSCTL1 = CALBC1 16MHZ;
                                        // Set DCO to 16MHz
  DCOCTL = CALDCO 16MHZ;
  P4OUT &= ~0x08;
  while (1)
   P4OUT |= 0x080;
   // P4.7 = 1
   P4OUT &= ~0x080;
                                         // P4.7 = 0
÷.
```


3

Implemented Supply Control Circuits!

• Brownout circuit

 \rightarrow fixed voltage supervisor which controls device release at the minimum allowed voltage (safety net)

- \rightarrow hysteresis implemented to operate during power up and power down
- 1. Brownout reset (BOR) circuit occurs when the device is powering up initializes the system
- 2. Also functions when no SVS is enabled and a brownout condition occurs
- 3. Sustains this reset until the input power is sufficient for the logic

Used example code with delay loop

msp430x22x4_clks.c * ×	
<pre>#include <msp430.h></msp430.h></pre>	
int main(void)	
int i=0;	
P2DIR = 0x02; P2SEL = 0x02;	// P2.1 output direction // P2.1 = SMCLK
P4OUT &= ~0x88; P4DIR = 0x88;	// P4.4 and P4.7 output direction
for(i=0;i<250;i++);	<pre>// for turn on with 2ms ramp up time</pre>
<pre>WDTCTL = WDTPW + WDTHOLD; if (CALBC1_16MHZ==0xFF) { while(1); }</pre>	<pre>// Stop Watchdog Timer // If calibration constant erased // do not load, trap CPU!!</pre>
P4OUT = 0x08; DCOCTL = 0; BCSCTL1 = CALBC1_16MHZ; DCOCTL = CALDC0_16MHZ; P4OUT ε= ~0x08;	// Select lowest DCOx and MODx settings // Set DCO to 16MHz
<pre>while (1) { P4OUT = 0x080; // P4.7 = 1</pre>	
P4OUT &= ~0x080;	// P4.7 = 0
}	

5

Differences in MSP430 device families!

- Which clock frequency at which voltage?
 - 1. For F1xx, F2xx and F4xx the supply voltage has to be reached sufficient level before increase operating frequency!

Differences in MSP430 device families!

- Which clock frequency at which voltage?
 - 1. For F1xx, F2xx and F4xx the supply voltage has to be reached sufficient level before increase operating frequency!
 - 2. For F5xx/F6xx the sub regulated onboard LDO voltage level has to be considered in addition.

Differences in MSP430 device families!

- Which clock frequency at which voltage?
 - 1. For F1xx, F2xx and F4xx the supply voltage has to be reached sufficient level before increase operating frequency!
 - 2. For F5xx/F6xx the sub regulated onboard LDO voltage level has to be considered in addition.
 - 3. For FRxx device family the supply vs. frequency dependencies are much more relaxed due to improved design.

5.3	5.3 Recommended Operating Conditions									
Typica	Typical data are based on V _{CC} = 3.0 V, T_A = 25°C (unless otherwise noted)									
					UNIT					
Vcc	Supply voltage range applied at all DVCC and AVCC pins ⁽¹⁾ (2) (3)	1.8 ⁽⁴⁾		3.6	V					
V _{SS}	Supply voltage applied at all DVSS and AVSS pins		0		V					
TA	Operating free-air temperature	-40		85	°C					
TJ	Operating junction temperature	-40		85	°C					
CDVCC	Capacitor value at DVCC ⁽⁵⁾	1_20%			μF					
	No FRAM wait states (NWAITSx = 0)	0		8 ⁽⁷⁾	MLIT					
SYSTE	With FRAM wait states (NWAITSx = 1) ⁽⁸⁾	0		16 ⁽⁹⁾	IVIT1Z					
f ACLK	Maximum ACLK frequency			50	kHz					
f SMCLK	Maximum SMCLK frequency			16 ⁽⁹⁾	MHz					

Wrap Up

- 1. Check out device specific datasheet and users guide for dedicated operating conditions and implemented supply voltage control features!
- 2. Consider possible supply variation scenarios on application level meeting supply voltage control circuit specifications like
 - Voltage thresholds
 - Hysteresis voltage
 - Voltage slew rates for power up & down
- 3. Keep in mind! It is essential to consider the recommended operating conditions during whole operation window

Dietmar Walther – CMCU Quality

Implemented Supply Control Circuits!

Brownout circuit

→ fixed voltage supervisor which controls device release at the minimum allowed voltage (safety net)

- Supply Voltage Supervisors

 → mostly configurable supervisors to react
 on supply changes aligned to application use case
- User configurable supply supervision using integrated ADC modules
 → user definable and configurable supply voltage control

5.21 PMM, Br	ownout Reset (BOR)					
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(DVCC_BOR_IT-)	BOR _H on voltage, DV _{CC} falling level	dDV _{CC} /d _t < 3 V/s			1.45	v
V(DVCC_BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	dDV _{CC} /d _t < 3 V/s	0.80	1.30	1.50	v
V(DVCC_BOR_hys)	BOR _H hysteresis		50		250	mv
t _{reset}	Pulse duration required at RST/NMI pin to accept a reset		2			μs

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		SVSHE = 0, DV _{CC} = 3.6 V	0			- 0	
I(SVSH)	SVS current consumption	SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 0		200		nA	
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		2.0		ΠΑ	
	$V_{(SVSH_IT-)} \ SVS_H$ on voltage level $^{(1)}$	SVSHE = 1, SVSHRVL = 0	1.59	1.64	1.69	v	
V(SVSH_IT-)		SVSHE = 1, SVSHRVL = 1	1.79	1.84	1.91		
		SVSHE = 1, SVSHRVL = 2	1.98	2.04	2.11		
		SVSHE = 1, SVSHRVL = 3	2.10	2.16	2.23		
	SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.81			
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.01	V	
	$V_{(SVSH_T*)} SVS_{H} \text{ off voltage level}^{(1)}$	SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.21		
V		SVSHE = 1, SVSMHRRL = 3	2.20	2.26	2.33		
V(SVSH_IT+)		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.48		
		SVSHE = 1, SVSMHRRL = 5	2.56	2.70	2.84		
	SVSHE = 1, SVSMHRRL = 6	2.85	3.00	3.15			
	SVSHE = 1, SVSMHRRL = 7	2.85	3.00	3.15			
t _{pd(SVSH)} SVS _H propagation delay	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1		2.5				
	SVSHE = 1, dV _{DVCC} /dt = 1 mV/µs, SVSHFP = 0		20		μs		
		SVSHE = 0→1, SVSHFP = 1		12.5			
t(SVSH) SVSH on or off delay time		SVSHE = $0 \rightarrow 1$, SVSHFP = 0		100		μs	
dVpvcc/dt	DV _{CC} rise time		0		1000	V/s	

