

Industrial Drive: EMC analysis

Angelo Strati

Field Application Engineer +393346054571 Angelo.strati@we-online.com

Rossella Astorino

Marketing Executive +393358447450 Rossella.Astorino@we-online.com

21.09.2020 | Italian Technical School | Public | SMPS: Power Inductor analysis

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

2

21.09.2020 | Italian Technical School | Public | SMPS: Power Inductor analysis

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us

3

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

4

ITALIAN

TECHNICAL S C H O O L

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

5

ITALIAN

TECHNICAL

 Possibility to agree on the presence of a FAE during the EMC tests in the laboratory

- Realization of free in-House seminars at your headquarters or in video-conference on different topics (EMC, ESD, DC / DC filtering, selection of inductors ...)
- Support in the selection of components for your application
- Sending of free samples for the prototyping phase and / or the EMC test phase
- Possibility to request on-site presence for project support

- DC Brushless
- Source of Interference
- Components for filtering
- More than Filter

8

DC Motor (Brushless)

Applications

- Fans
- Conveyers
- Pump
- Compressor
- Printer
- Automotive

Stator

• Generate magnetic field

Rotor

• Build by permanent magnet

Dual construction of Brushed

Sources of Interference

- PWM Drive
- Control Logic and Oscillator
- Interfaces
- Switching Regulator
- Layout
- Wiring

Wired interference - Conducted Emission

- Cause of the interference voltage of (9) 150kHz ... 30MHz:
 - Ripple current on the supply side
 - Rise/fall time controlled by gate drive
 - Interference current via parasitic coupling capacitances to ground (common mode)
- The unbalanced voltage sampled per phase contains symmetrical and asymmetrical components. .
- Limit value for the asymmetrical interference voltage, e.g. according to EN 61000-6-3

Emiss. 9kHz-30MHz ESIB26 ESH3-Z2 NNB-41 N

Noise Emission - Radiated Emission

- Cause for the interference field strength of 30MHz ... 1 (6) GHz:
 - Noise current on conductor tracks or loops
 - Noise current on conductive housings
 - Interference current on lines connected to interfaces
- Limit value for the radio interference field strength e.g. according to EN 61000-6-3

Overview sources of interference

Type of Fault	Dominant Source	Frequency Range	Radiated or Conducted
Low Frequency Range	Fundamental and harmonics of the controller switching frequency	10kHz to 30MHz	Conducted
Broadband Interference	dl / dt and dU / dt of the FET (silicon) switching edges and parasitic resonant circuits	30MHz to 200MHz	Conducted and Radiated
High Frequency interference	Reverse Recovery of Schottky Diodes	Over 200MHz	Radiated

Differential mode interference: Filtering

- Minimizing the differential mode interferers by :
- Placing a RF decoupling "C" close to the switching node
- \succ Keep high $\Delta I / \Delta t$ loops (loop antennas) compact \rightarrow Minimization of H-fields
- Use ferrite to filter HF differential noise generated by Oscillator

Differential mode interference: Filtering

- DM Filtering:
- Input LC Filter to attenuate PWM signals (pulses)
- Place the correct way: input impedance of the transducer is very low, normally mainly dominated by the one or two capacitors
- > The filter inductance thus represents a mismatch of impedance, and thus an effective DM filter

Layout Suggestions on Drive Board : GND Reference for Filter

- Constriction reduces reflections (VSWR) in gigahertz range
- Right angle arrangement reduces capacitive coupling
- Vias and direct conductive board mounting enable low-impedance ground connection

Common mode interference: Common Mode Choke

- Large common mode current paths due to the heat sink formation of HF capacitance
- These leads to problems with the Conducted & Radiated Measurement!
- Use Common Mode Choke and X or Y caps

FET : fsw to 20MHz

Kind of Simulation

- Parasitic coupling to and through stator
- Influence of grounding (of stator)

Kind of Simulation

- Parasitic coupling to and through stator
- Influence of grounding

- Slew rate of driver
- Dead time impact

Kind of Simulation

Motor Side

- Filtering Choke (L):
 - Several micro Henry
 - Rode choke (WE-SD)
 - Ferrite Bead (WE-UKW, WE-PF, WE MPSB)
- Cx Capacitor:
 - Several nano Farad
 - WCAP-FTXX, WCAP-FTX2)
- Cy Capacitors
 - Several nano Farad

More Than Filter: Shielding

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

More Than Filter: Shielding

 Housing should be metal or metalized to provide shielding.

 Slots should be eliminated or minimized to keep from making them "slot antenna"

Be Careful With Oscillator

Layout Suggestions: Segmentation for functional areas

Slicing the GND layer to form sub-grounds (AGND, DGNG, PGND)

Placement of the filters in the device

- Cables between filter and appliance are too long
- Susceptible to interference emission and immunity to interference Capacitive coupling (E-field) and inductive coupling (H-field)

Placement of the filters in the device

- Low-inductive and areal connection of the filter to housing / PE
- <u>Twisted lines (not only differential signals!)</u>
- Plan cable routing exactly! Star-shaped cover!

Thank You For your Attention