Patient monitoring 101: Part-7

ECG lead detection in wearable devices

Prepared by: Anand Udupa

Agenda

Overview of lead detection

- Need for leads on and leads off detection

DC lead detection

- Methods of biasing and detection
- Design example

AC lead detection

- Signal chain for AC lead detection
- Design example

Overview of lead detection

Method of DC lead biasing and detection

Lead biasing using resistors

Lead biasing using current sources

Principle of lead detection – All leads off

DC lead detection – Design example

Example.

```
VDD = 1.8VVCM = 0.9VI_{LEAD} = 30 nATHR_H = VCM+0.6V = 1.5VTHR_L = VCM-0.6V = 0.3V
```

When $R_{CONT} > 20 M\Omega$: $I_{LEAD} * R_{CONT} > 0.6V$ INP_COMP_L = 1 INM_COMP_H = 1

 $R_{CONT} = 20 \text{ M}\Omega$ represents the threshold between leads on and leads off

AC lead detection - Concept

AC lead detection – Design example

Summary

• Lead detection is an important function in an ECG signal acquisition system

- Allows changing the signal acquisition mode based on whether leads are ON or OFF
- Can help alert the user to make better contact with the electrodes

DC lead detection

- DC lead detection comprises lead biasing using either resistors or current sources
- The transition between leads on and leads off happens at a threshold value of electrode contact resistance : this threshold is dependent on the lead bias resistance or current source value and the detection threshold

AC lead detection

- AC lead detection can be realized through AC/ switching current sources at the leads
- The signal strength at the AC switching frequency appearing at the ECG signal chain output can be used to determine the contact impedance of the lead

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com