Patient monitoring 101: Part-6

Electrode configurations and interface circuitry for ECG in wearable devices

Prepared by: Anand Udupa

Agenda

- Overview of ECG acquisition on wearable devices
 - Overview
 - Challenges posed by high contact impedance
- Electrode configurations for ECG acquisition on wearable devices
 - Role of Right Leg drive
 - 2-electrode and 3-electrode configurations
- Electrode interface circuitry
 - DC and AC coupled configurations
 - Filtering and buffering

ECG electrode placement on a watch

Overview of ECG acquisition on wearable devices

ECG signal - Raw and filtered

Interface of the electrodes to the analog front end

Interface of the electrodes to the analog front end

ECG on a wearable device - challenges

- Dry electrodes with small size can have high contact impedance
- High contact impedance can cause ECG signal attenuation
- Contact impedance adds thermal noise needs to be low pass filtered before the ADC
- Mismatch in contact impedance can degrade CMRR

Effect of contact impedance

High contact impedance (relative to input impedance of the INA) can cause signal attenuation

Effect of contact impedance

High contact impedance can also introduce an extra thermal noise component

Common mode interference

Common mode interference from mains is picked up by the body

Common mode to differential conversion

Common mode interference picked up by the electrodes can get converted into differential signal if the INP & INM contact to the electrodes are mismatched

Driving RLD electrode through feedback suppresses mains pickup

Electrode configurations

2-electrode AC coupled

2-electrode AC coupled

3-electrode DC coupled

DC vs. AC coupling

DC coupling

- DC coupling allows direct connection to the electrode without shunt components → Highest input impedance
- Input DC bias set by driving 3rd electrode strongly with RLD → Best CMRR
- Allows both AC and DC lead detection
- In DC coupled configuration, electrode offsets need to be handled by INA, so INA gain has to be small

AC coupling

- AC coupling helps to remove the DC offset and allows higher INA gain
- Input pins biased through R_{BIAS}
- Low R_{BIAS} → Reduces input impedance
- High R_{BIAS}: Reduces CMRR
- C_{AC}/R_{BIAS} forms a HPF Recovery time of HPF is high

Buffering and filtering

- Contact impedance adds noise that needs to be filtered before ADC
- Other interferers also need to be filtered
- If external LPF is used to filter the noise → LPF cap reduces input impedance
- External LPF can be inserted using an external buffer to prevent input impedance degradation
- Buffer adds to power consumption

- Internal LPF solves these issues
- LPF acts as an anti-aliasing filter, helping to filter noise
- Allows direct connection to electrode without buffer.

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com