Yolov5 Model Deployment on TI's Edge Al

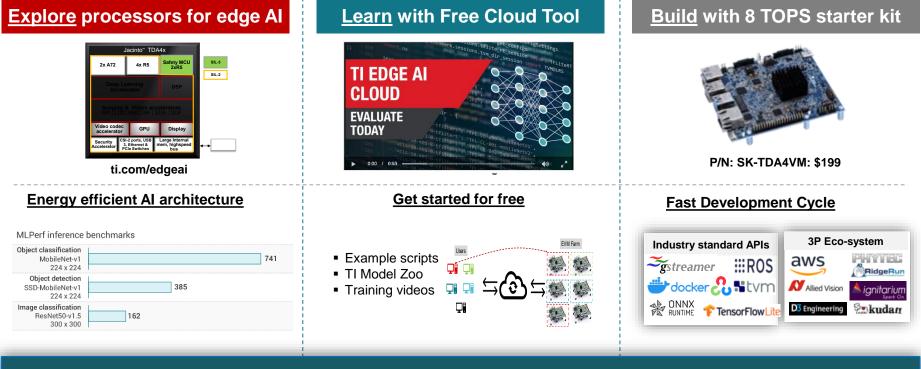
Platform for Efficient Object Detection

Jacinto[™] Al monthly webinar series Dec 9th 2021

Webinar | Agenda

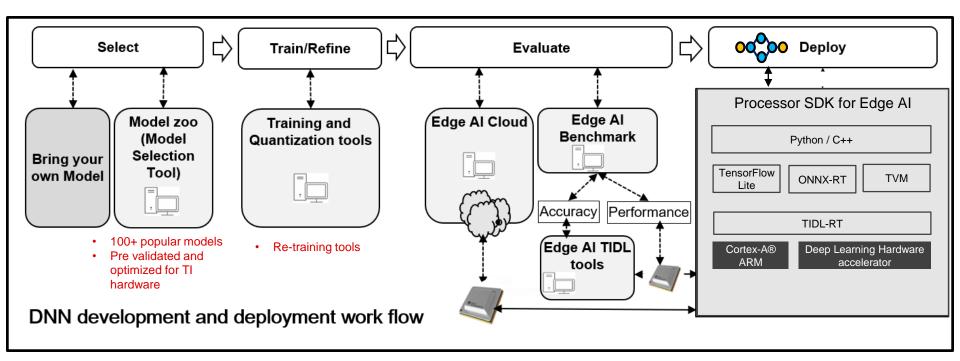
- Recap of TI's Edge AI solution
- TI Model Zoo
- YOLOv5 model overview
- Optimizations for TI's deep learning accelerator
- Compiling the model using open-source run time
- Model benchmarking on TI's free cloud tool

TI Edge AI | Revolutionizing applications from factories to home



ti.com/edgeai for all the resources you have to get started!

Extensive tools for faster DL model development & deployment



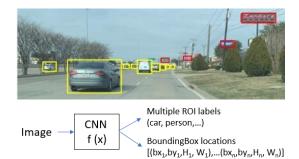
Model Zoo | What is inside?

- Three primary Tasks:
 - 1. Classification



2. Semantic Segmentation

3. Object Detection

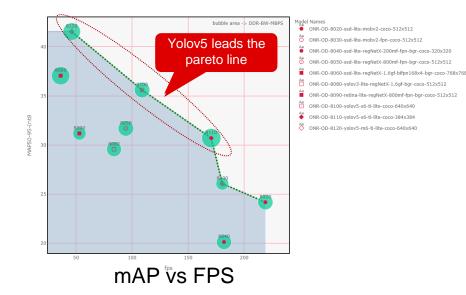


All models are compiled, optimized and ready to be deployed!
 We have 60+ models to choose

Model Zoo | 2D Object Detection

Supported Object Detection Architectures:

- SSD
- RetinaNet
- EfficientDet
- YOLOv3
- YOLOv5
- YOLOX
- Several example models from each family of detector are part of the modelzoo. These are pre-compiled models for easy evaluation.
- We host repositories to train these models on your own dataset as well.



YOLOv5 provides one of the best tradeoff in terms of performance and accuracy

TI Information - Selective Disclosure

https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/08_00_00_12/exports/docs/tidl_j7_08_00_00_10/ti_dl/docs/user_guide_html/md_tidl_fsg_meta_arch_support.html

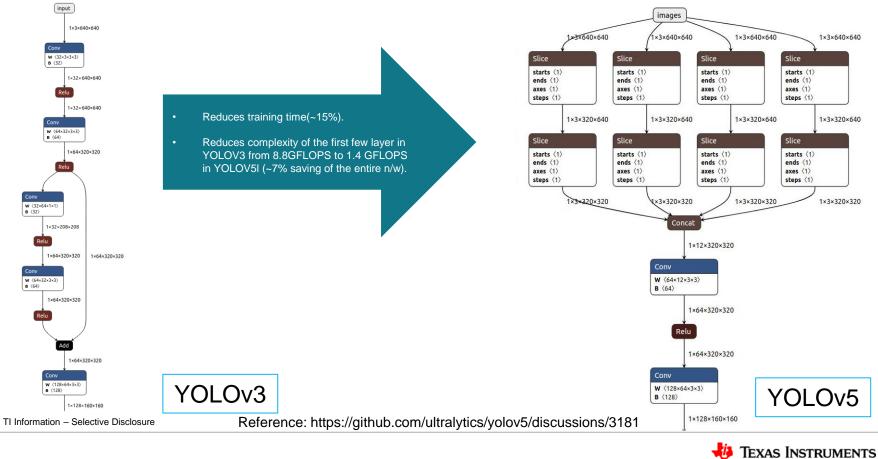
Deep dive | YOLOv5

Yolov5 built on top of YOLOv3 by Ultralytics with a quantum jump in accuracy.

□ Next, we look into the following major changes from YOLOv3 to YOLOv5:

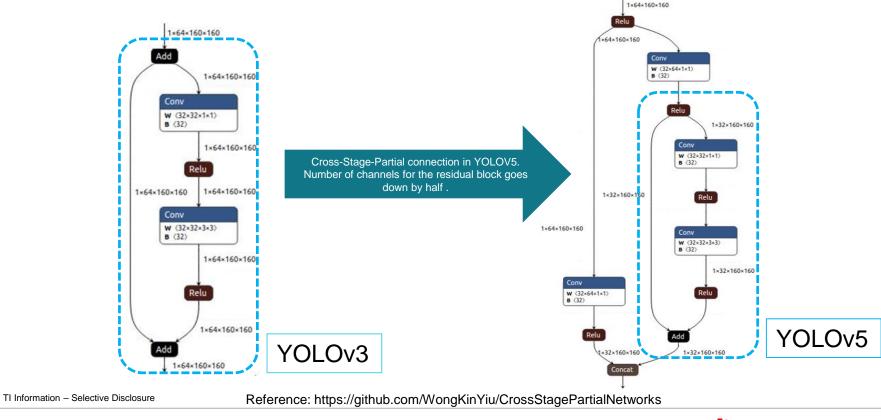
- Focus Layer
- Backbone
- Feature Fusion
- Auto-anchor
- Augmentation

YOLOv5 Architecture | Focus layer



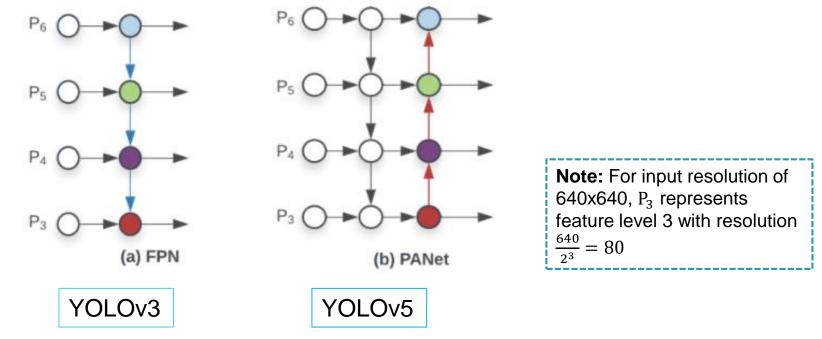
YOLOv5 Architecture | Backbone

• CSPDarknet53 is used as backbone instead of Darknet53. Results in 30% lesser FLOPS.



YOLOv5 Architecture | Feature fusion

- Feature fusion is used to fuse features from multiple spatial levels of a deep network.
- Path Aggregation Network (PANet) is used instead of Feature Pyramid Network (FPN) of YOLOv3.



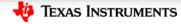
YOLOv5 Architecture | Other highlights

- Auto anchor: Learning anchor boxes based on the distribution of bounding boxes in the custom dataset with K-means and genetic learning algorithms. Eliminate need for hand-designed anchors.
- Augmentation: Mosaic augmentation among many others.
- No Image-net pre-trained weights. Trains from scratch.

YOLOv5 vs YOLOv3 | Complexity Reduction

Model	Complexity Info (GFLOPS)	mAP	Comments
YOLOv3	156	34.0	YOLOv3 complexity @ 640x640
YOLOv5L(Backbo ne)	-45		CSPDarknet53 reduces complexity by 30%
YOLOv5L(Focus Layer)	-7		
YOLOv5L(Feature Fusion)	+11		FPN vs PANet
YOLOv5L	(156-45-7+11) = 115	48.8	Overall complexity reduction is ~25%
YOLOv5m	51.3	45.2	depth_multiple = 0.67, width_multiple = 0.75
YOLOv5s	17.0	37.2	depth_multiple = 0.33, width_multiple = 0.5

YOLOv5L reduces complexity by ~25% and improves accuracy by ~43%



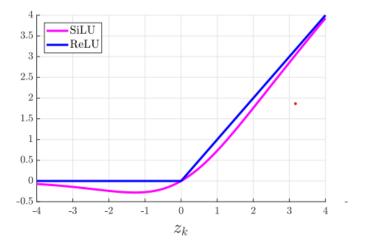
Defining YOLOv5-ti-lite | Optimizations for TI's deep learning accelerator

- This is in a spirit to deriving Efficient-net-Lite from Efficient-net with the intention of making it embedded friendly.
 https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
- These changes are focused on replacing an existing layers that **are not embedded or quantization friendly** with layers of similar functionality. E.g.
 - Replace activations like SiLU, hswish, leaky ReLU with ReLU.
 - Remove Squeeze and Excitation layers.
 - Perform down-sampling using Convolution or max-pool instead of spatial slicing.
 - Replace max-pool of higher receptive field with serially connected max-pool of lower receptive field.
- Apart from YOLOv5, TI model zoo has similar optimized model for MobileNetv3, EfficientNet, YOLOX, YOLOv3 and so on.

Refer <u>https://github.com/TexasInstruments/edgeai-modelzoo</u> for TI optimized models

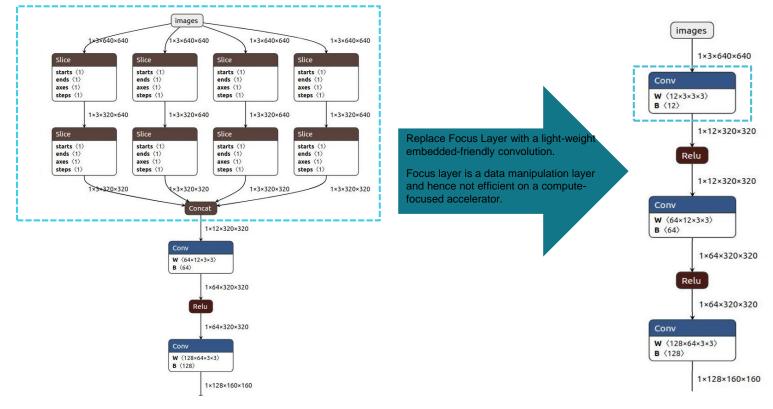
Yolov5-ti-lite definition | Activation, Image size

- SiLU is defined as **x*****sigmoid(x)**. This non-linearity is not embedded friendly.
- Replaced SiLU non-linearity with ReLU for better acceleration.



• Variable size inference was replaced with fixed size inference.

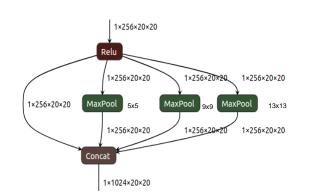
Yolov5-ti-lite definition | Focus layer



Yolov5-ti-lite definition | Spatial Pyramid Pooling

- Spatial Pyramid Pooling (SPP) is used by modern networks to increase the effective receptive field. In YOLOv5, this module is implemented using maxpool with large kernel (k=13,s=1)
- In YOLOv5-ti-lite, unsupported Max-pools inside SPP module are realized with TIDL supported max-pool layers.
 - E.g. max-pool(k=13,s=1) is replaced with six serially connected max-pool (k=3,s=1). They are **functionally same**.

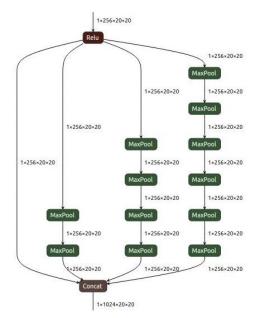
Yolov5-ti-lite definition | Spatial Pyramid Pooling

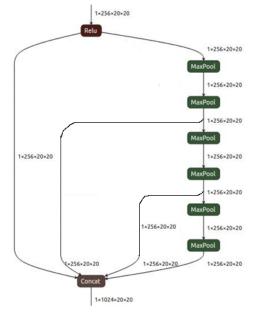


SPP module in YOLOV5. Four parallel branches :

```
{
Original i/p,
K=5,s=1,
K=9,s=1,
K=13,s=1
}
```

TI Information - Selective Disclosure





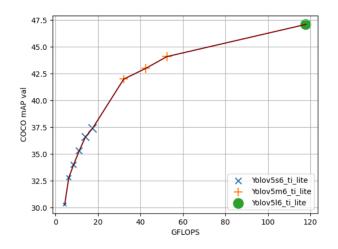
Max-pools with larger receptive fields are implemented by max-pool with (k=3,s=1)

Further optimized version.

Model Training

Training | YOLOv5-ti-lite

- Forked from the official YOLOv5 repository, edgeai-yolov5 contains all the changes that we have described until now.
- Train a suitable YOLOv5-ti-lite model using this repo on your own dataset.
- Pretrained checkpoints are hosted to reproduce all the listed results.



Dataset	Model Name	Input Size	GFLOPS	AP[0.5:0.95]%	AP50%	Notes
COCO	Yolov5s6_ti_lite_640	640x640	17.48	37.4	56.0	
COCO	Yolov5s6_ti_lite_576	576x576	14.16	36.6	55.7	(Train@ 640, val@576)
COCO	Yolov5s6_ti_lite_512	512x512	11.18	35.3	54.3	(Train@ 640, val@512)
COCO	Yolov5s6_ti_lite_448	448x448	8.56	34.0	52.3	(Train@ 640, val@448)
сосо	Yolov5s6_ti_lite_384	384x384	6.30	32.8	51.2	(Train@ 384, val@384)
сосо	Yolov5s6_ti_lite_320	320x320	4.38	30.3	47.6	(Train@ 384, val@320)
COCO	Yolov5m6_ti_lite_640	640x640	52.5	44.1	62.9	
сосо	Yolov5m6_ti_lite_576	576x576	42.52	43.0	61.9	(Train@ 640, val@576)
сосо	Yolov5m6_ti_lite_512	512x512	32.16	42.0	60.5	(Train@ 640, val@512)
COCO	Yolov5l6_ti_lite_640	640x640	117.84	47.1	65.6	This model is fintuned from the official ckpt for 100 epochs

TI Information – Selective Disclosure

https://github.com/TexasInstruments/edgeai-yolov5

Yolov5s-ti-lite | Impact on Accuracy

Model config	PyTorch mAP/AP50
Official model	36.7/55.4
SiLU replaced with ReLU	34.9/53.7
ReLU + conv_focus (Definition of yolov5-ti-lite)	35.0/54.4

~2% drop occurs from ReLU to SiLU activation function.

ONNX Export

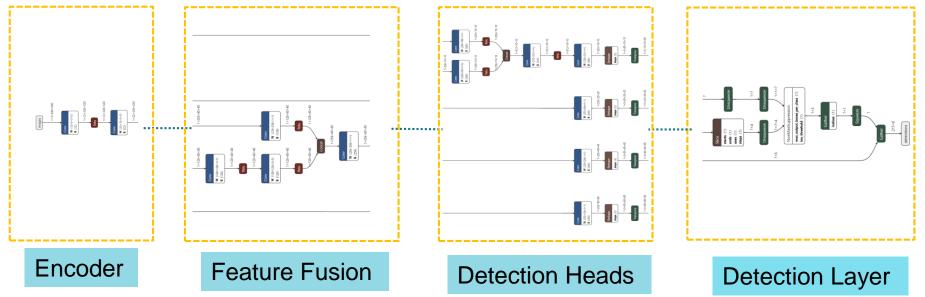
ONNX Export | YOLOv5-ti-lite

- In order to deploy the model in EVM, we need to export the entire model. This support is added in edgeai-yolov5 repository.
- Export the ONNX model by running the following command:

python export.py --weights pretrained_models/yolov5s6_640_ti_lite/weights/best.pt --img 640 --batch 1 --simplify --export-nms --opset 11 # export at 640x640 with batch size 1

This gives a complete ONNX model that can be offloaded fully in our DL accelerator.

ONNX Export | YOLOv5-ti-lite



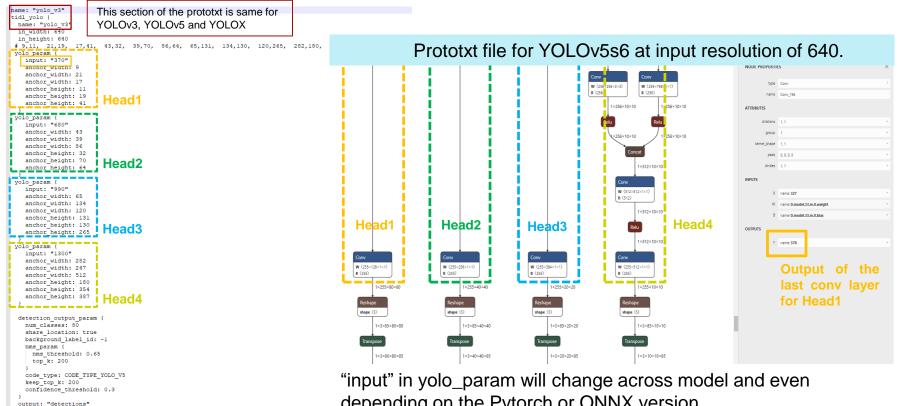
For an OD model, detection layer consists of layers after the last convolution that includes box-decoding, confidence computation and NMS.

Model Compilation and Deployment

OD Model Compilation | TI Deep Learning

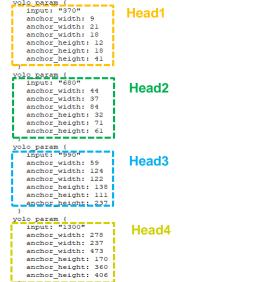
- Similar to classification and segmentation models, this model needs to be compiled before deployment.
- An important step of compiling an OD model is defining prototxt.
- Prototxt file contains all relevant information of the detection layer.
- Our training repo edgeai-yolov5 contains multiple sample prototxt for reference.
 - <u>https://github.com/TexasInstruments/edgeai-yolov5/tree/master/pretrained_models/models</u>

OD Model Compilation | Defining Prototxt



depending on the Pytorch or ONNX version

OD Model Compilation | Updating Anchor Dimensions



- Each head contains information of anchor dimensions for that head.
- In YOLOv5, anchor dimensions are optimized for "Best Possible Recall" based on dataset and input resolution.
- Anchor dimensions need to be updated for any change in dataset or resolution .
- Next, we discuss several example prototxt.
- Given below is a snippet of anchor evolution in YOLOv5.

OD Model compilation | Defining Prototxt

.

```
tidl_yolo {
 name: "yolo v3"
 in width: 640
 in height: 640
 # 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
 yolo param {
   input: "370"
   anchor width: 9
   anchor width: 21
   anchor width: 17
   anchor height: 11
   anchor height: 19
   anchor height: 41
 yolo_param {
   input: "680"
   anchor width: 43
   anchor width: 39
   anchor width: 86
   anchor height: 32
   anchor height: 70
   anchor height: 64
 yolo param {
   input: "990"
   anchor width: 65
   anchor width: 134
   anchor width: 120
   anchor height: 131
   anchor height: 130
   anchor height: 265
 yolo param {
   input: "1300"
   anchor width: 282
   anchor width: 247
   anchor width: 512
   anchor height: 180
   anchor height: 354
   anchor_height: 387
detection output param {
   num classes: 80
   share location: true
   background label id: -1
   nms param {
     nms threshold: 0.65
     top k: 200
   code type: CODE TYPE YOLO V5
   keep top k: 200
    confidence threshold: 0.3
    output: "detections"
 TI Information – Selective Disclosure
```

- Information related to NMS and box decoding are stored under s detection_output_param.
- These parameters must be matched against the training framework for expected outcome.
- nms_threshold: Determines the overlap beyond which boxes are ignored
- **top_k** : Number of boxes that goes for NMS.
- **keep_top_k:** Maximum number of boxes that are retained after NMS.
- **confidence_threshold:** Boxes with confidence greater than this threshold are only retained.
- For accuracy reproduction, confidence_threshold is set to a low value (E.g. 0.01)
- For all practical purposes, confidence_threshold can be set to a high value like 0.3.

Prototxt Example | Input resolutions

- · Dataset and the model definition are same.
- "Auto-anchor" algorithm tunes the anchor dimensions to the input resolution.

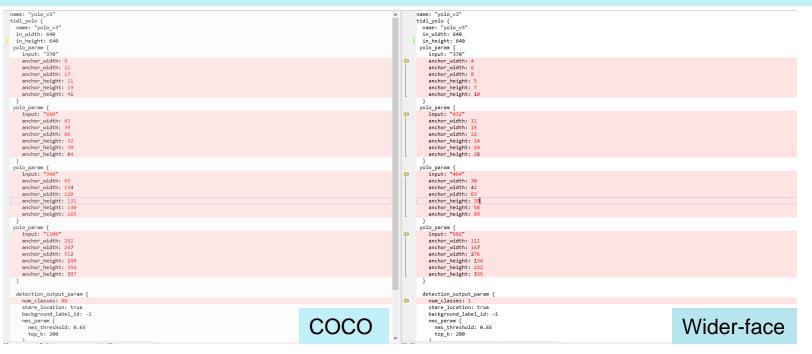
	tidl_yolo {	^	name: "yolo_v3" tidl_yolo {	^
ļ	name: "yolo_v3" in_width: 640 in_height: 640 #9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 yolo_parama { input: "370"	[name: "yolo_v3" in_width: 384 in_height: 384 # 5,7, 12,11, 10,24, 25,19, 21,40, 46,32, 33,74, 69,61, 70,119, 147,96, 126,196, 292,224 yolo_param { input: "370"	
	anchor_width: 9 anchor_width: 21 anchor_width: 17 anchor_height: 11 anchor_height: 19 anchor_height: 41 } yol_parama { input: "660"	ļ	<pre>anchor_width: 5 anchor_width: 12 anchor_width: 10 anchor_height: 7 anchor_height: 11 anchor_height: 14 } yolc_param { input: "660"</pre>	
	anchor_width: 43 anchor_width: 39 anchor_width: 86 anchor_hsight: 32 anchor_hsight: 70 anchor_hsight: 64 } yola_params { inout: "990"	ļ	<pre>anchor_width: 25 anchor_width: 21 anchor_width: 46 anchor_height: 19 anchor_height: 40 anchor_height: 32 } yolc_param { input: "900"</pre>	
ļ	anchor_width: 55 anchor_width: 134 anchor_width: 120 anchor_height: 131 anchor_height: 130 anchor_height: 265 }	ŀ	<pre>anchor_width: 33 anchor_width: 69 anchor_width: 70 anchor_height: 74 anchor_height: 61 anchor_height: 119 }</pre>	
	yolo_param { input: "1300" anchor_width: 282 anchor_width: 247 anchor_width: 512 anchor_height: 180 anchor_height: 354 anchor_height: 354	•	yolo_param { input: "J300" anchor_width: 147 anchor_width: 126 anchor_width: 292 anchor_height: 96 anchor_height: 196	
	} detection_output_param { num_lasses: 80 share_location: true background_label_id: -1 nms_param {		<pre>} detection_output_param { num_classes: 80 share_location: true background_label_id: -1 nms_param {</pre>	
	VOLOv5s6_640	~	nes_threshold: 0.65 top_k: 200 } code_type: CODE_TYPE_YOLO_V5	± 0 ∓
TLI	nformation – Selective Disclosure			

Prototxt comparison | Different models

- · Anchor dimensions remain same for the same dataset and input resolution.
- Since the model definition has changed, "input" to yolo_param has to be updated as shown below.

Prototxt Example | Across dataset

- "Auto-anchor" algorithm tunes the anchor dimensions for different dataset.
- Wider-face prevalently has smaller objects than COCO. Hence, resultant anchor dimensions are much smaller.
- "num_classes " is set to 1.



Model Compilation | Quantization

- Floating-point inference are not cost and power-efficient so we need to quantize the model to Fixed-point.
- Fixed point 8-bit quantization results in reduction in accuracy.
- We explore various options to bridge the gap between float and fixed point model close to 1%.
- Given below are the quantization options used for YOLOv5.

Name	Description	Default values
tensor_bits	Number of bits for TIDL tensor and weights - 8/16	
accuracy_level	0 - basic calibration, 1 - higher accuracy(advanced bias calibration), 9 - user defined [^3]	1
advanced_options:calibration_frames	Number of frames to be used for calibration - min 10 frames recommended	
advanced_options:calibration_iterations	Number of bias calibration iterations	50
advanced_options:output_feature_16bit_names_list	List of names of the layers (comma separated string) as in the original model whose feature/activation output user wants to be in 16 bit	"last conv layers, first conv layer"

YOLOv5s6-ti-lite | Advanced calibration



Model config	Tidl-f32 mAP/AP50	Tidl-q16 mAP/AP50	Tidl-q8 mAP/AP50	Tidl-Quant mAP/AP50 (first layers in 16 bits)		Tidl-Quant mAP/AP50 (first and last layers in 16 bits)
Yolov5s6_ti_	37.1/56.2	37.1/56.2	33.1/53.9	31.3/52.8	36.0/55.5	36.0/55.5
lite_640		(23.52mS)	(8.55mS)	(9.23mS)	(9.13mS)	(9.82mS)

With mixed precision, we are able to bridge the gap with floating point to ~ 1%.
 All YOLOv5 models perform well with only the last layer in 16 bit or both the first and last layer in 16 bit.

YOLOv5s6-ti-lite | Edgeai-benchmark

- Another Easy and preferred way of compiling a model is to use "edgeaibenchmark".
- □ All required pre-processing and post-processing to reproduce the reported accuracy has been taken care of.
- □ This repo can be used to compile a model and then use it for deployment.
- Given below is the config for YOLOv5s6-640-ti-lite:

'od-8108':utils.dict_update(common_cfg,
preprocess=preproc_transforms.get_transform_onnx(640, 640, resize_with_pad=True, mean=(0.0, 0.0), scale=(0.003921568627, 0.003921568627, 0.003921568627), backend='cv2', pad_color=[114,114,114]),
<pre>session=onnx_session_type(**common_session_cfg,</pre>
<pre>runtime_options=utils.dict_update(settings.runtime_options_onnx_np2(),</pre>
{'object_detection:meta_arch_type': 6,
'object_detection:meta_layers_names_list':f'/edgeai-yolov5/pretrained_models/models/yolov5s6_640_ti_lite/weights/yolov5s6_640_ti_lite_metaarch.prototxt',
'advanced_options:output_feature_16bit_names_list';'370, 680, 990, 1300'
}),
<pre>model_path=f'/edgeai-yolov5/pretrained_models/models/yolov5s6_640_ti_lite/weights/yolov5s6_640_ti_lite_37p4_56p0.onnx'),</pre>
postprocess=postproc_transforms.get_transform_detection_yolov5_onnx(squeeze_axis=None, normalized_detections=False, resize_with_pad=True, formatter=postprocess.DetectionBoxSL2BoxLS()), #TODO: check this
<pre>metric=dict(label_offset_pred=datasets.coco_det_label_offset_80to90(label_offset=1)),</pre>
<pre>model_info=dict(metric_reference={'accuracy_ap[.5:.95]%':37.4})</pre>

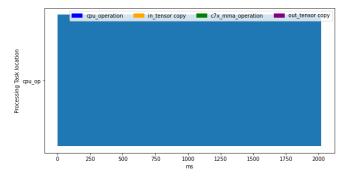
TI Information – Selective Disclosure

https://github.com/TexasInstruments/edgeai-benchmark/blob/master/configs/detection.py

YOLOv5 | Latency estimation

- We try to estimate latency of the original YOLOv5s6 model without any optimization.
- Estimate shows:
 - Focus Layer (ARM): 7.6mS
 - SPP module (ARM): 4.1mS
 - SiLU Activation (Estimate): 4.2 mS
 - Rest of the model(Accelerated): 8mS
 - Total latency: (7.6+4.1+4.2+8) = 23.9mS
 - FPS : (1000/23.9) = 41.84
 - Our optimized model is ~2.6x faster with negligible drop in accuracy.

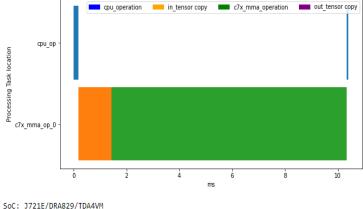
YOLOv5-ti-lite | Cloud Evaluation



Statistics : Inferences Per Second : 0.49 fps Inference Time Per Image : 2020.71 ms DDR BW Per Image : 0.00 MB

YOLOv5s6-ti-lite_640 0.49 fps AI processing (ONLY ARM)

TI Information - Selective Disclosure



SoC: J721E/DRA829/TDA4VM OPP: Cortex-A72 @2GHZ DSP C7x-MMA @1GHZ DDR @4266 MT/s

ONR-OD-8100-yolov5-s6-ti-lite-coco-640x640 : Inferences Per Second : 109.59 fps Inference Time Per Image : 9.13 ms

YOLOv5s6-ti-lite_640 109.6 fps AI processing (TIDL acceleration) CPU is involved only in the beginning for small amount of time (Blue)

Conclusion

- YOLOv5-ti-lite is an optimized version of YOLOv5 that can be fully accelerated in our hardware accelerator.
- These models are part of model-zoo
 - Ready for deployment in **TI Edge AI** cloud tool and the Starter-kit EVM.
- Our training repository "edgeai-yolov5" can be used to train an optimized model on your own dataset.
 - Models trained here can be easily compiled and deployed.
- "edgeai-benchmark" can be used to compile and benchmark your trained model.

Call to action

- You can use Edge AI Cloud tool today to run the examples that we showed in this webinar
- Future topics
 - Several topics are planned: AIOT with AWS, AI-BOX, AI based 3D Lidar processing for edge AI and Robotics, Pose estimation and Robotics
 - Let us know any specific topics are of interest

- Contact TI for support (<u>e2e.ti.com</u>)
 - Please also let us know any specific topics you want us to cover in the future webinars

ti.com/edgeai

