ePWM Time-Base Submodule

C2000 Enhanced Pulse Width Modulator (ePWM) Series

Time-Base (TB) Submodule

- Configure the PWM time-base counter frequency & period
- Set the mode for the time-base counter (up, down, or up-down)
- Configure the phase & synchronization

Time-Base Submodule: Equations for Period and Frequency

🠌 Texas Instruments

Time-Base Submodule: Calculating Frequency and Period

Example: If I want a 50KHz output, what value do I set for TBPRD?

Step 1) Calculate T_{PWM}

 $F_{PWM} = \frac{1}{T_{PWM}} = 50 \text{KHz} \rightarrow T_{PWM} = 20 \text{usec}$

Step 2) Calculate TBCLK and T_{TBCLK}

 $TBCLK = \frac{EPWMCLK}{HSPCLKDIV * CLKDIV} = \frac{100MHz}{2 * 1} = 50MHz$ $T_{TBCLK} = \frac{1}{TBCLK} = \frac{1}{50MHz} = 20nsec$

* Values of HSPCLKDIV and CLKDIV are configurable through the HSPCLKDIV and CLKDIV bits of the TBCTL register

Step 3) Calculate TBPRD for Up – Count Mode

$$T_{PWM} = (TBPRD + 1)T_{TBCLK} = 20usec$$
$$TBPRD = \frac{T_{PWM}}{T_{TBCLK}} - 1 = \frac{20usec}{20nsec} - 1 = 999$$

$$T_{PWM} = 2 * TBPRD * T_{TBCLK} = 20usec$$

$$TBPRD = \frac{T_{PWM}}{2 * T_{TBCLK}} = \frac{20usec}{2 * 20nsec} = 500$$

Time-Base Submodule: Programming Frequency and Period

From the previous example, we learned that in order to generate a 50KHz output, TBPRD needs to be 999 for Up or Down Count mode or 500 for Up-and-Down-Count mode. How do we program this? Below is an example for the Up-Count counter mode:

EPWM Time Base		~
Emulation Mode	Stop after next Time Base counter increment or decrement	
Time Base Clock Divider	Divide clock by 1	
High Speed Clock Divider	Divide clock by 2	
Time Base Period	999	
Time Base Period Link	Disable Linking	•
Enable Time Base Period Global Load		
Time Base Period Load Mode	PWM Period register access is through shadow register	
Time Base Period Load Event	Shadow to active load occurs when time base counter reaches 0	
Initial Counter Value	0	
Counter Mode	Up - count mode	-
Enable Phase Shift Load		
Sync Out Pulse	Sync pulse is generated by software	
Force a Sync Pulse		

Time-Base Submodule: Calculating Phase Shift Value

Example: How do I get two ePWM modules with a 90 degree phase shift? TBPRD is 500

The phase value is set through the TBPHS register

 $TBPHS = \frac{TBPRD * Desired Phase Degree}{180}$ $TBPHS = \frac{500 * 90}{180} = 250$

Therefore:

- first ePWM module would have a TBPHS value of 0
- second ePWM module would have a TBPHS value of 250

SysConfig

EPWM Time Base	
Emulation Mode	Stop after next Time Base counter increment or decrement
Time Base Clock Divider	Divide clock by 1
High Speed Clock Divider	Divide clock by 2
Time Base Period	500
Time Base Period Link	Disable Linking
Enable Time Base Period Global Load	
Time Base Period Load Mode	PWM Period register access is through shadow register
Time Base Period Load Event	Shadow to active load occurs when time base counter reaches 0
Initial Counter Value	0
Counter Mode	Up - count mode
Enable Phase Shift Load	
Phase Shift Value	<u>2</u> 50
Sync Out Pulse	Sync pulse is generated by software
Force a Sync Pulse	

Time-Base Submodule: Synchronization

There are two synchronization schemes for ePWM Type 4:

🤴 Texas Instruments

Time-Base Submodule: Synchronization Example

Example: How do I synchronize EPWM2, EPWM4, and EPWM5 to EPWM1?

EPWM 1

- The SYNC Source
 - This EPWM module will drive the sync pulse of the other modules
- Its <u>SYNCIN</u> comes from EXTSYNCIN1
- The <u>SYNCOUT</u> signal can be configured to be any of the following:
 - A software trigger, zero event, CMPB/C/D match, or the SYNCIN pulse.

In this example, let's choose a SYNCOUT when TBCTR = ZRO

EPWM_setSyncOutPulseMode(EPWM1_BASE,EPWM_SYNC_OUT_PULSE_ON_COUNTER_ZERO);

EPWM 2

- The <u>SYNCIN</u> will be EPWM1's <u>SYNCOUT</u>
- Its <u>SYNCOUT</u> will be SYNCIN (pass through of the sync signal)

EPWM_setSyncOutPulseMode(EPWM2_BASE, EPWM_SYNC_OUT_PULSE_ON_EPWMxSYNCIN);

8

Time-Base Submodule: Synchronization Example

Example: How do I synchronize EPWM2, EPWM4, and EPWM5 to EPWM1?

EPWM4

- The <u>SYNCIN</u> is configured through SYNCSEL.EPWM4SYNCIN
- The <u>SYNCOUT</u> of EPWM4 will be its own SYNCIN

In this example, we are going to choose the SYNCOUT of EPWM1 as the SYNCIN for EPWM4 SysCtl_setSyncInputConfig(SYSCTL_SYNC_IN_EPWM4,SYSCTL_SYNC_IN_SRC_EPWM1SYNCOUT); EPWM_setSyncOutPulseMode(EPWM4_BASE,EPWM_SYNC_OUT_PULSE_ON_EPWMxSYNCIN);

EPWM5

- EPWM5's <u>SYNCIN</u> is EPWM4's SYNCOUT
- EPWM5's <u>SYNCOUT</u> will be its own SYNCIN

EPWM_setSyncOutPulseMode(EPWM5_BASE,EPWM_SYNC_OUT_PULSE_ON_EPWMxSYNCIN);

Time-Base Submodule: Synchronization Example – Programming

Example: How do I synchronize EPWM2, EPWM4, and EPWM5 to EPWM1?

Within the 'SYNC' module of Control, EPWM1 & EPWM4 SYNCIN sources are selected:

SYNC	(⊕ ADD	VE ALL	
SYNCOUT (EXTSYNCOUT) Source	EPWM1SYNCOUT> EXTSYNCOUT		
EPWM1 Sync In Source	SYNC IN SRC EXTSYNCIN1		
EPWM4 Sync In Source	SYNC IN SRC EPWM1SYNCOUT		

Within the Time-Base submodule of the EPWM module, for EPWM1:

Enable Phase Shift Load	Svnc pulse is generated when time base counter equals zero		
Force a Sync Pulse			Sync Source:
Within the Time-Base submodule of the	e EPWM module, for EPWM2, 4, and 5:		• Disable phase shift Sync Receivers:
Enable Phase Shift Load			 Provide phase shift
Phase Shift Value	250		 Enable phase shift
Sync Out Pulse	Sync pulse is passed from EPWMxSYNCIN 👻	0-0	
Force a Sync Pulse			
Enable Phase Shift Load Phase Shift Value Sync Out Pulse Force a Sync Pulse			 Provide phase shift Enable phase shift

Additional ePWM Resources

- <u>C2000 Academy</u> with Hands-on Labs
- TI Precision Labs: PWM Basics Overview
- TI Precision Labs: Motor Interfaces and PWM Frequencies
- ePWM Application Reports
 - Flexible PWMs Enable Multi-Axis Drives, Multi-Level Inverters
 - Using PWM Output as a Digital-to-Analog Converter
 - Using the ePWM Module for 0% 100% Duty Cycle Control
 - Leverage New Type ePWM Features for Multiple Phase Control

Check Video Description for Additional Resources

