Enable better reliability in HEVs and EVs with best-in-class isolation technology

Solid-state relays (SSRs)

Alex Triano

Where are isolated switches used in EVs?

Trend towards 800-V and higher battery packs are increasing the need for isolated switches throughout the vehicle.

BATTERY MANAGEMENT

- Pre-charge of HV capacitors
- Battery pack and port voltage monitoring
- Insulation resistance monitoring between HV rail and chassis ground

DC/DC & ON-BOARD CHARGER

- Insulation resistance monitoring between HV rail and chassis ground
- Discharge of HV capacitors

2

TRACTION INVERTER

٠

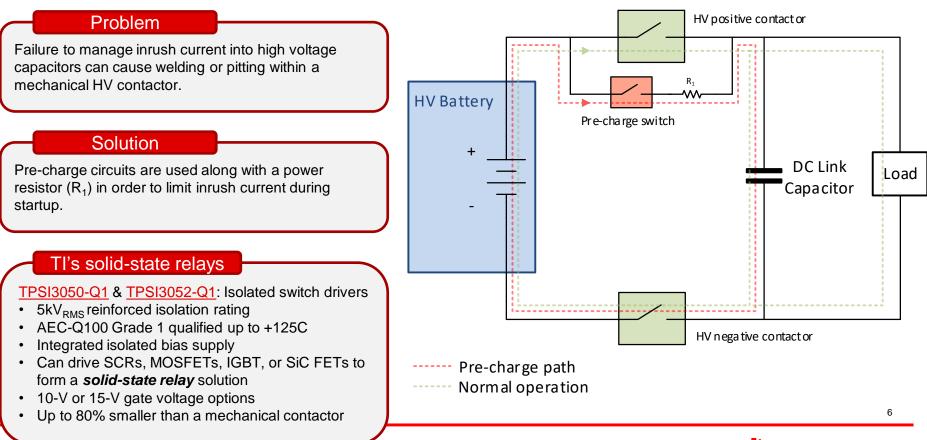
Discharge of HV capacitors

What isolation technologies are available?

	Electromechanical relay	Photo / Optical	Inductive transformer	Capacitive isolation
Insulation material	Air, gas, or Epoxy	Epoxy or Polyimide	Laminate or Polyimide	Silicon dioxide (SiO ₂)
Dielectric strength (1sec)	~1 V _{RMS} / µm ~20 V _{RMS} / µm	~20 V _{RMS} / μm ~300 V _{RMS} / μm	~300 V _{RMS} / μm	~500 V _{RMS} / µm
Advantages	Low resistance High power transfer	Low-EMI emissions	High speed (µs) High power transfer	High speed (µs) Low power consumed
Disadvantages	Slow speed (ms) Mechanical wear, vibration/magnetic immunity	Photodegradation and partial discharge (PD) Limited power transfer	IC design to limit EMI	IC design to limit EMI Limited power transfer
Operating ambient temp.	-40C to 85C	-40C to 85C	-40 C to 125 C	-40 C to 125 C
Cost	\$\$\$	\$	\$	\$

What isolation technologies are available?

Electromechanical relay	Photo / Optical	Inductive transformer	Capacitive isolation
Air, gas, or Epoxy	Epoxy or Polyimide	Laminate or Polyimide	Silicon dioxide (SiO ₂)
~1 V _{RMS} / μm ~20 V _{RMS} / μm	~20 V _{RMS} / μm ~300 V _{RMS} / μm	~300 V _{RMS} / μm	~500 V _{RMS} / μm
Low resistance High power transfer	Low-EMI emissions	High speed (µs) High power transfer	High speed (µs) Low power consumed
Slow speed (ms) Mechanical wear, vibration/magnetic immunity	Photodegradation and partial discharge (PD) Limited power transfer	IC design to limit EMI	IC design to limit EMI Limited power transfer
TI's inductive and capacitive isolation technologies provide the highest dielectric strength at the fastest			-40 C to 125 C \$
(relay Air, gas, or Epoxy ~1 V _{RMS} / μm ~20 V _{RMS} / μm Low resistance High power transfer Slow speed (ms) Mechanical wear, vibration/magnetic immunity	relayEpoxy or PolyimideAir, gas, or EpoxyEpoxy or Polyimide~1 V _{RMS} / µm ~20 V _{RMS} / µm~20 V _{RMS} / µm ~300 V _{RMS} / µmLow resistance High power transferLow-EMI emissionsSlow speed (ms) Mechanical wear, vibration/magnetic immunityPhotodegradation and partial discharge (PD) Limited power transferd capacitive isolation technologies	relaytransformerAir, gas, or EpoxyEpoxy or PolyimideLaminate or Polyimide~1 V _{RMS} / µm ~20 V _{RMS} / µm~20 V _{RMS} / µm ~300 V _{RMS} / µm~300 V _{RMS} / µmLow resistance High power transferLow-EMI emissionsHigh speed (µs) High power transferSlow speed (ms) Mechanical wear, vibration/magnetic immunityPhotodegradation and partial discharge (PD) Limited power transferIC design to limit EMId capacitive isolation technologies est dielectric streight at the fastest-40 C to 125 C



What isolation technologies are available?

	Electromechanical relay	Photo / Optical	Inductive transformer	Capacitive isolation
Insulation material	Air, gas, or Epoxy	Epoxy or Polyimide	Laminate or Polyimide	Silicon dioxide (SiO ₂)
Dielectric strength (1sec)	~1 V _{RMS} / µm ~20 V _{RMS} / µm	~20 V _{RMS} / μm ~300 V _{RMS} / μm	~300 V _{RMS} / μm	~500 V _{RMS} / µm
Advantages	Low resistance High power transfer	Low-EMI emissions	High speed (µs) High power transfer	High speed (µs) Low power consumed
Disadvantages	Slow speed (ms) Mechanical wear, vibration/magnetic immunity	Photodegradation and partial discharge (PD) Limited power transfer	IC design to limit EMI	IC design to limit EMI Limited power transfer
TI's isolated switches and drivers form a complete isolated solid-state relay solution. They offer increased reliability, with no wear over time.			-40 C to 125 C	-40 C to 125 C
			\$	\$

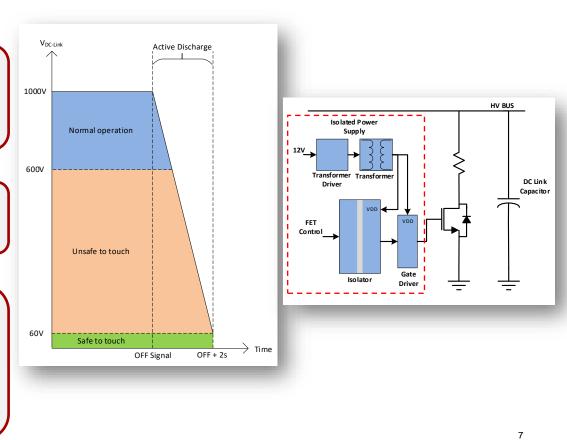
Pre-charging high voltage capacitors

Texas Instruments

Active discharge

Problem

When the vehicle turns off or in the case of an emergency crash, need to discharge high voltage capacitors to a safe level within seconds.


Solution

Solid-state relays can be used to connect and disconnect a high power pull-down resistor.

TI's solid-state relays

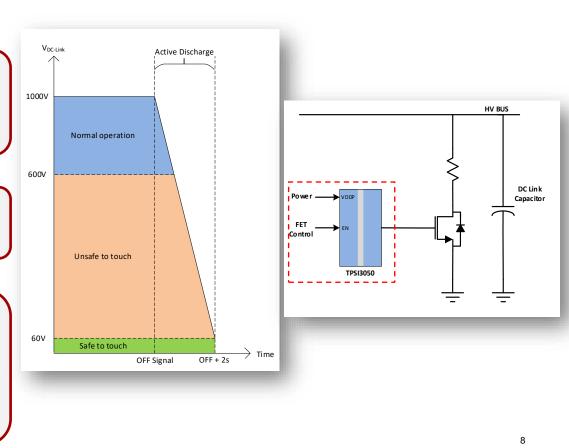
TPSI3050-Q1 & TPSI3052-Q1: Isolated switch driver

- 5kV_{RMS} reinforced isolation rating
- AEC-Q100 Grade 1 qualified up to +125C
- Integrated isolated bias supply
- Can drive SCRs, MOSFETs, IGBT, or SiC FETs to form a *solid-state relay* solution
- 10-V or 15-V gate voltage options

Active discharge

Problem

When the vehicle turns off or in the case of an emergency crash, need to discharge high voltage capacitors to a safe level within seconds.


Solution

Solid-state relays can be used to connect and disconnect a high power pull-down resistor.

TI's solid-state relays

TPSI3050-Q1 & TPSI3052-Q1: Isolated switch driver

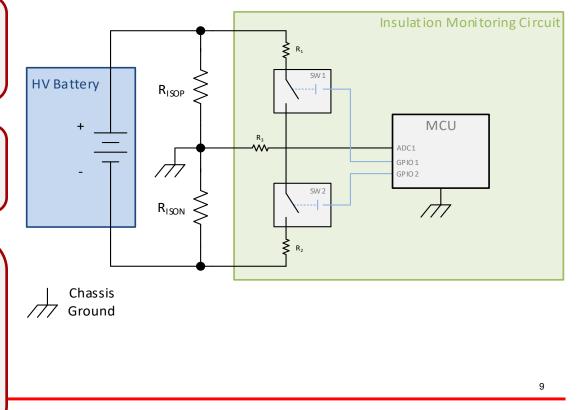
- 5kV_{RMS} reinforced isolation rating
- AEC-Q100 Grade 1 qualified up to +125C
- Integrated isolated bias supply
- Can drive SCRs, MOSFETs, IGBT, or SiC FETs to form a *solid-state relay* solution
- 10-V or 15-V gate voltage options

Insulation resistance monitoring

Problem

HV battery terminals must be insulated from chassis to protect drivers and passengers.

Electric Vehicle Safety Standards (ISO 6469-3)


Solution

HV isolated switches (SW1-SW2) are used to connect known resistors (R_1 - R_3) and monitor the unknown insulation resistance (R_{ISOP} and R_{ISON})

TI's solid-state relays

TPSI2140-Q1: 1400-V, 50-mA isolated switch

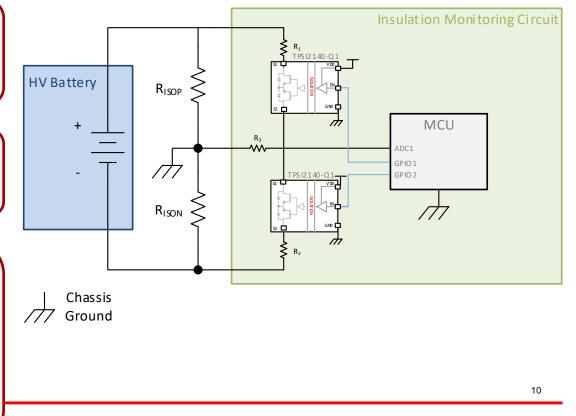
- Solid-state relay, >26-year projected lifetime
- 3.75kV_{RMS} isolation rating
- AEC-Q100 Grade 1 qualified up to +125 C
- Suitable for 400-V or 800-V battery systems
- 2-mA avalanche capability survives hi-pot and surge tests without reed relay disconnect
- Enables use of <1Mohm HV resistors, leading to improved accuracy measurements

Insulation resistance monitoring

Problem

HV battery terminals must be insulated from chassis to protect drivers and passengers.

Electric Vehicle Safety Standards (ISO 6469-3)


Solution

HV isolated switches (SW1-SW2) are used to connect known resistors (R_1 - R_3) and monitor the unknown insulation resistance (R_{ISOP} and R_{ISON})

TI's solid-state relays

TPSI2140-Q1: 1400-V, 50-mA isolated switch

- Solid-state relay, >26-year projected lifetime
- 3.75kV_{RMS} isolation rating
- AEC-Q100 Grade 1 qualified up to +125 C
- Suitable for 400-V or 800-V battery systems
- 2-mA avalanche capability survives hi-pot and surge tests without reed relay disconnect
- Enables use of <1Mohm HV resistors, leading to improved accuracy measurements

Summary

✓ Isolated switches are used throughout EVs to solve problems including:

- Pre-charging high voltage capacitors
- Active discharge
- Insulation resistance monitoring
- ✓ TI's new portfolio of solid-state relays use inductive and capacitive isolation
 - Highest dielectric-strength materials helps reduce solution size and cost.
 - Qualified up to AEC-Q100 grade 1, +125 C.
 - Robust isolation barrier with >26 year projected lifetime.
 - Size, reliability, and cost advantages over mechanical relay and photo/optical technologies.

Learn more at ti.com/SSR

