Meeting Space-Grade Requirements for Mission Critical Applications

Precision Analog solutions for Satellite Subsystems

Jason Clark, Systems Engineering Manager, Space and Avionics Systems team Michael Seidl, Systems Engineer, Systems Engineering & Marketing - Aerospace

Agenda

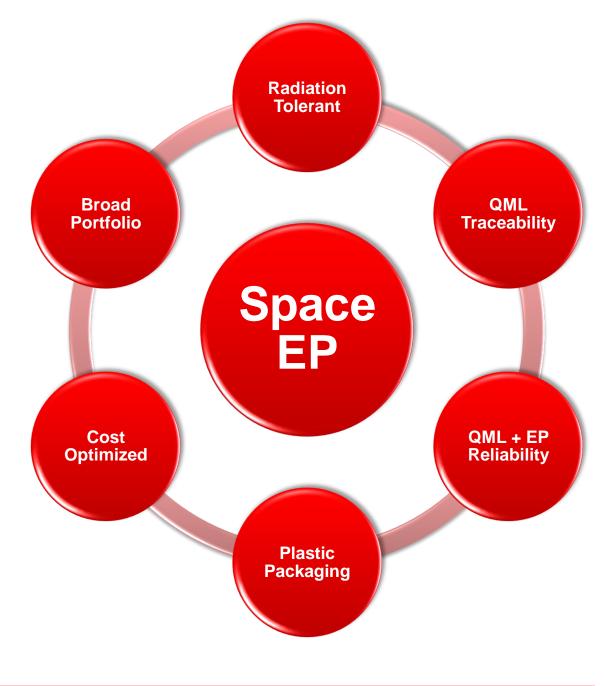
- **Space Product Overview**
- Analog front-end design with TI tooling landscape
- Space-grade, 50-krad, overcurrent event-detection circuit
- Linear Thermoelectric Cooler (TEC) Driver Circuit with high accuracy and ulletstability and minimized noise emissions
- **Rad-Hard and Rad-Tolerant Current Measurement Solutions**

Texas Instruments Space Product Overview

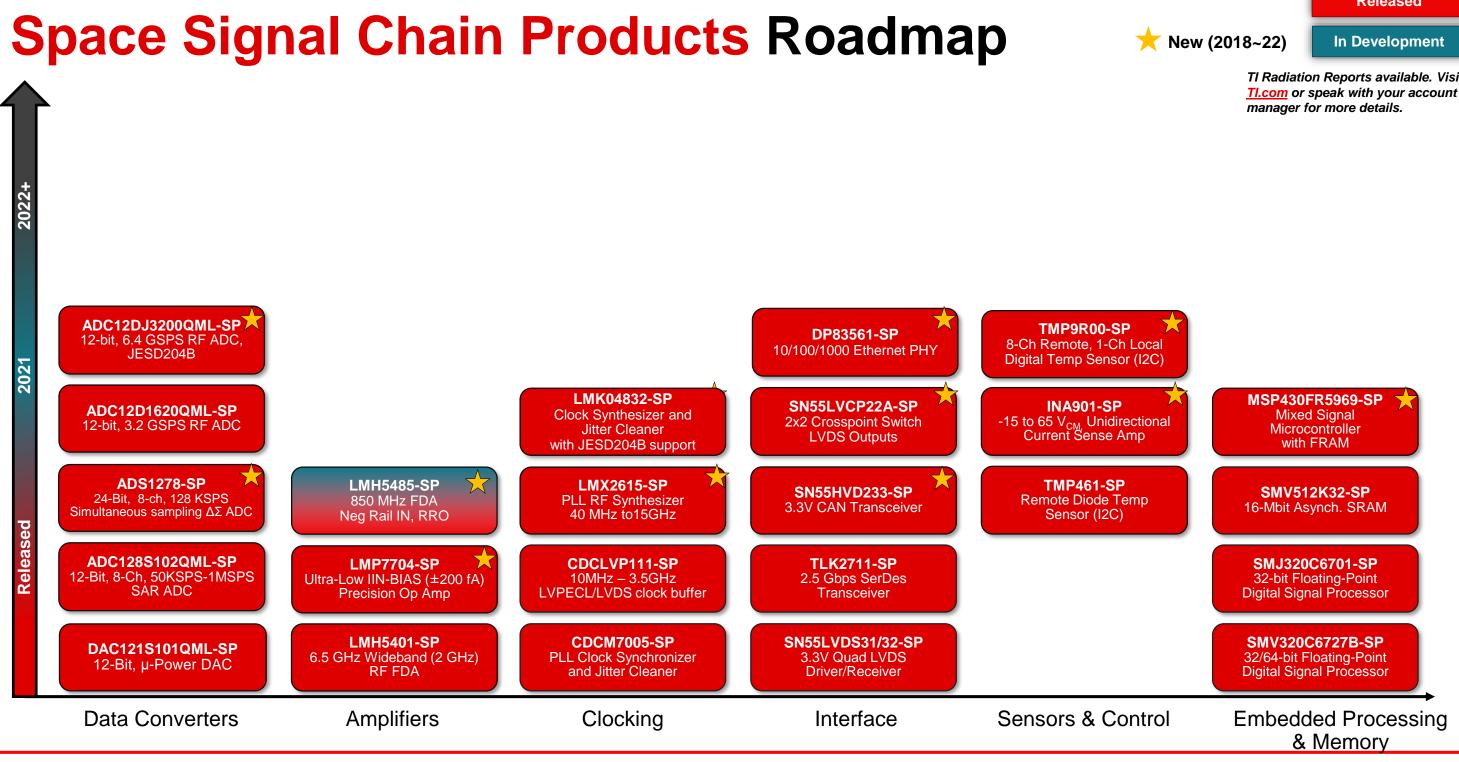
June 2022 www.ti.com/space

Space Products Types

Packaging	Plastic	Plastic	FC on Organic Substrate	Ceramic / Me
Mil. Spec	VID	VID/SMD*	VID/SMD*	SMD
Burnin	No	Yes	Yes	Yes
TID Char	30 – 50 krad(Si)		50 – 300 krad(Si)	
TID RLAT	20, 30, or 50 krad(Si)		Non-RHA, 50, 100, or 300 krad(Si)	
DSEE/SEL	43 MeV⋅cm²/mg		≥ 60 MeV·cm²/mg	

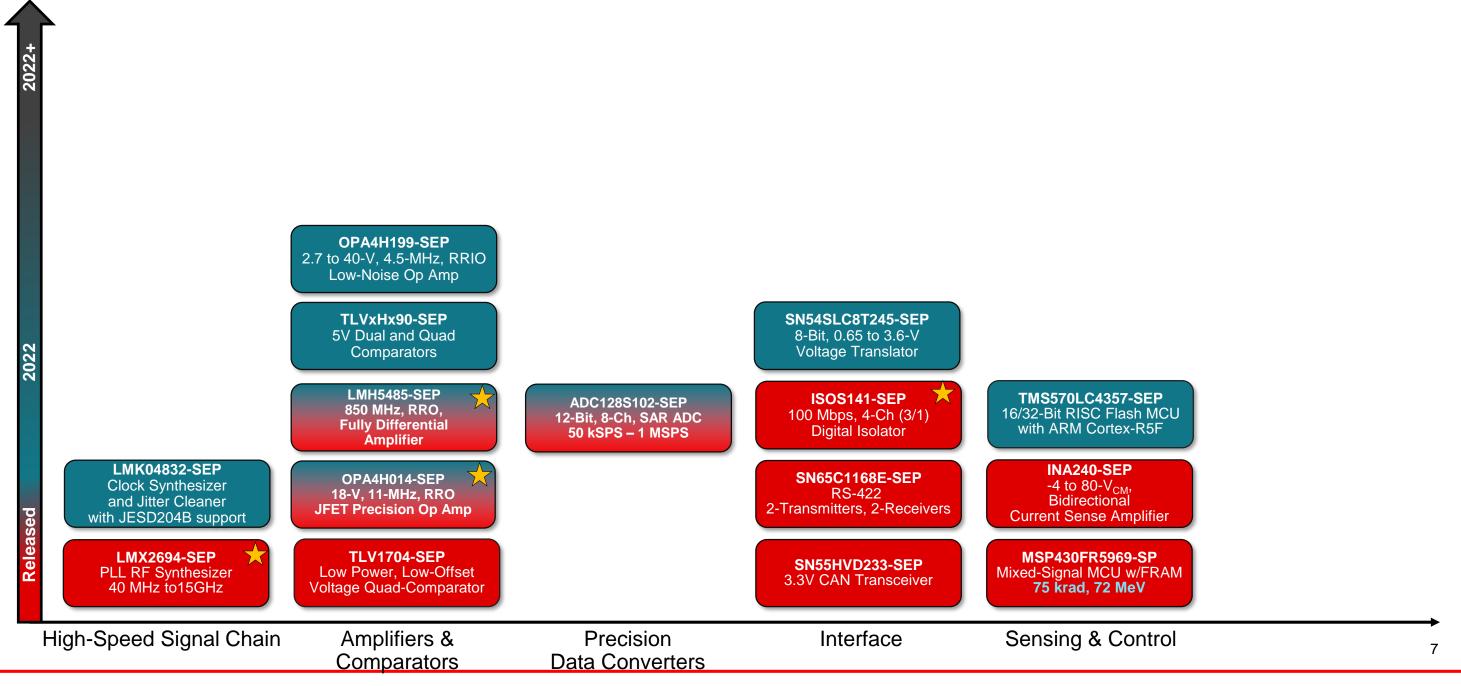

Metal Can

D



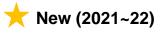
What is Space EP?

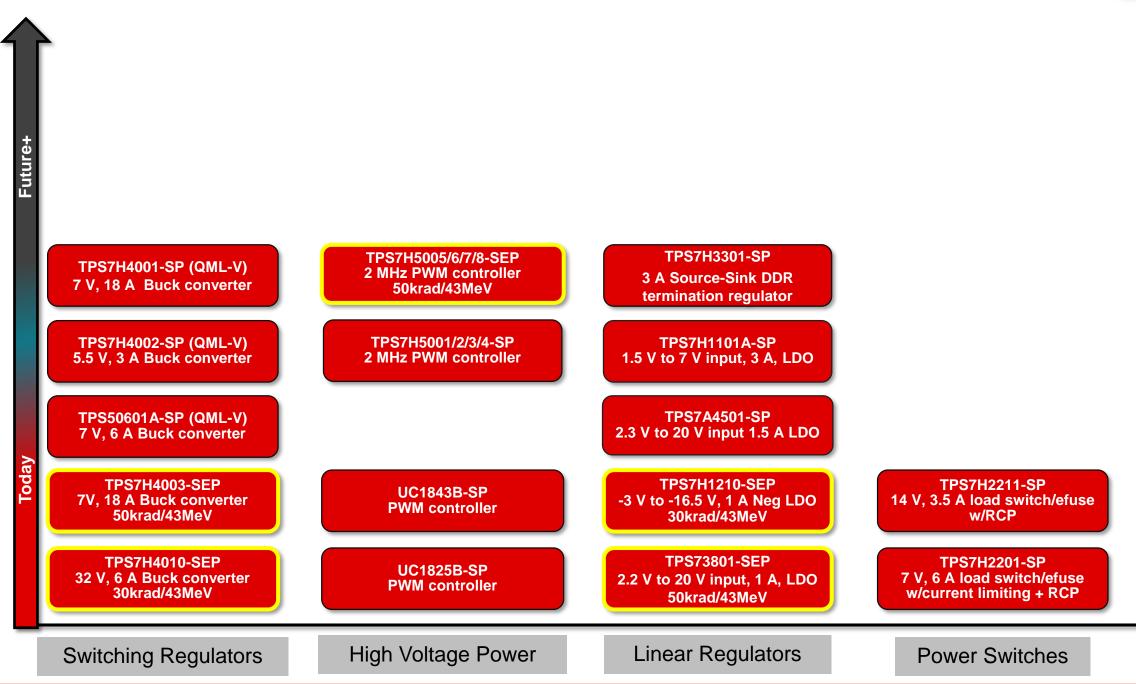
- Cost effective **radiation tolerant** solution typically for shorter duration high volume small satellites
- Space EP = Radiation + Reliability + Traceability
 - Radiation
 - TID Characterization 30 50 krad (ELDRS-Free)
 - TID Radiation Lot Acceptance (RLAT): 20, 30, or 50 krad
 - SEL/SEB/SEGR Immune to 43 MeV-cm²/mg
 - Reliability
 - <u>Military Temperature Range : -55°C to +125°C</u>
 - <u>Robust Material Set</u>: Lead Frame, Mold Compound, Au Bond Wire, etc.
 - <u>Enhanced Qualification (HAST, Extended Temp, Meets MIL-</u> PRF 38535 Class N)
 - QML-Like Traceability
 - Wafer Lot Traceability
 - Vendor Item Drawing (VID) MilSpec



TI Radiation Reports available. Visit

Concept


Space EP Products Roadmap



Space Power Roadmap

8

Ref & Supervisors

TL7700-SEP 40V Supervisor 30krad/43MeV

LM4050QML-SP 2.5V, 5V precision shunt VREF

TL1431-SP 36V, adjustable shunt VREF

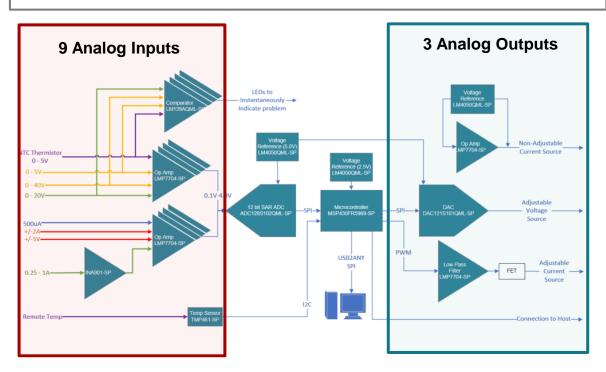
Concept

Plastic Package

Released

Space Grade Satellite Telemetry Reference Design TIDA-010197

Benefits

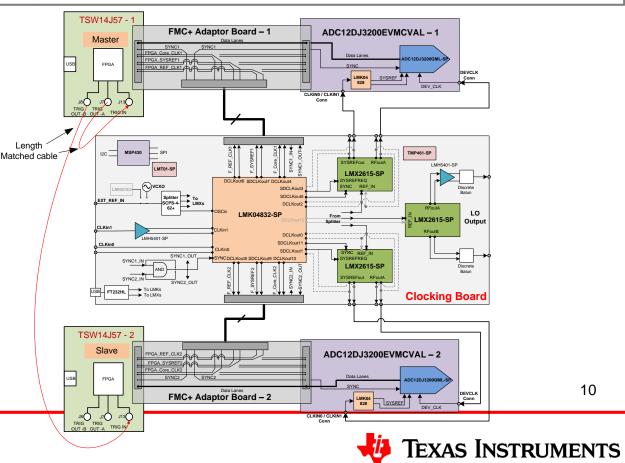

- All inclusive telemetry module to monitor a variety of measurements:
 - Voltage, Current, Temperature, Sensors (Current Output)
- Options for "5 V Rail" or "5 V and 12V Rails" •
- Multiple integration options for different size, cost, and accuracy needs •
 - Integrated MCU ADC (50~75 krad and 72 MeV)
 - ADC128S102QML-SP 12-Bit ADC (100 krad and 75 MeV)

Target Applications

- Satellites
 - Health Monitoring / Telemetry •
 - Power Monitoring on Busses
 - **RF PA Biasing**
 - **TEC Monitor**
 - Attitude & Orbit Control System (AOCS)

Devices

- ADC128S102QML-SP 8-Ch, 12-bit ADC
- MSP430FR5969-SP FRAM Mixed-Signal Microcontroller ٠
- Precision Quad Op Amp LMP7704-SP ٠
- LM158QML-SP GP Dual Op Amp ٠
- DAC121S101QML-SP 12-Bit DAC •
- Shunt Voltage Reference LM4050QML-SP •
- TMP461-SP Digital Output (I2C) Temp Sensor ٠
- Current Sense Amp INA901-SP •
- LM139QML-SP Quad Comparator ٠



Multichannel JESD204B Clocking Reference Design for Space Payloads - TIDA-010191

Features

Benefits

- JESD204B compatible clocking solution for high dynamic range and high SNR multi-channel signal chain
- Configurable phase synchronization to achieve low skew in multichannel system
- Power efficiency optimized power subsystem for clock generation
- Easily interface with high speed data converters and synchronization
- Compares performance of multiple clocking solution of different complexity and cost

- Multi-channel JESD204B complaint clocking solution,
- Converter Device clock frequency LMX2615–SP (max 15 GHz)
- Converter SYSREF provided for JESD204B interface LMX2615-SP
- Scalable clocking solution, which can generate various DEVCLK by LMX2615-SP or LMK04832-SP
- Option to generate high frequency local oscillator for front end mixer
- Complete small, highly efficient power subsystem using DC/DC and LDO regulators/modules

Target Applications

- **Communications Payload**
- **Radar Payload** ٠
- Command and data handling

Tools & Resources

- TIDA-010191
- **Design Guide** ٠
- Design Files: Schematics, BOM, Gerber, Software

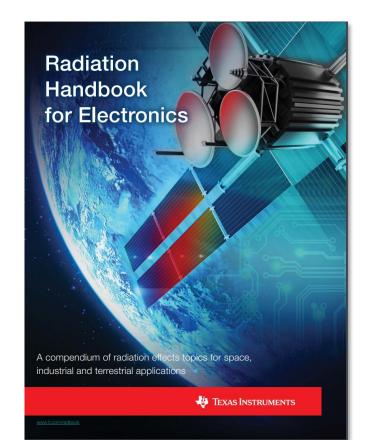
Devices:

- ADC12DJ3200QML-SP
- ADC12DJ3200EVMCVAL •
- LMX2615-SP •
- _MK04832-SP
- TSW14J57EVM

TI Space Documentation

Space Product Guide

- All TI products for Space
- Includes device listing for QMLV, Space-EP, Die, EMs, and **Mechanical Samples**
- Updated in March 2022



Spacecraft Circuit Design Handbook collection of technical content on spacecraft circuit design

TEXAS INSTRUMENTS

Space Circuit Handbook

• Ebook of useful space circuit designs including step-by-step instructions, formulas, and simulations to quickly get your design started

Radiation Handbook Provides explanation of radiation effects on semiconductors including TID, NDD, and SEE • Written by industry experts Rob Baumann and Kirby Kruckmeyer

Visit www.ti.com/space for additional information

Analog front-end design for data acquisition systems with TI's tooling landscape

Analog front-end design for data acquisition systems with TI's tooling landscape

- Data acquisition system design goals & challenges
- Component & topology selection with Analog Engineer's Calculator
- Design iterations with TINA-TI simulator
 - Basic functionality
 - Noise analysis / ENOBs
 - Linearity / frequency response
 - Stability (Phase- & gain margin)
 - Settling time
- Summary

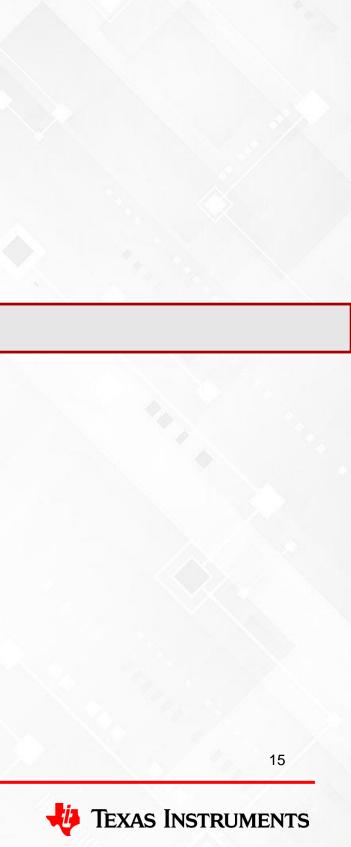
Space-grade precision data acquisition

Target applications

Satellite precision data acquisition systems:

- Thermal control of optical instruments / camera system
- Linear displacement (position) sensing / motion control
- Gyro sensor
- Atomic clock

Design goals and challenges


- Strong signal performance for ENOB of 16 and higher:
 - Low noise addition from active components
 - Low noise floor (single digit nV/\sqrt{Hz})
 - High linearity for low distortion from harmonics (< -110dBc, up-to 40kHz)
 - Low quantification noise / short enough settling time (uV-level after 1/fz)
 - Strong common mode noise suppression (down to zero impact)
 - Low drift (e.g. offset drift of < 1 μ V/°C; input bias current drift of < 20nA)
 - high stability (phase margin of 60°+)
- Low power consumption per channel (down to 10s of mW, highly dependent on mode of operation)
- Smallest possible board area & cost
- Optimized input buffer stage:
 - Input impedance target >100kOhm
 - Input full scale range (FSR) much smaller or much greater than ADC's FSR of typically 5V
 - Common mode voltage equal or unequal to 0V

Agenda

Analog Front End design for data acquisition systems with TI's tooling landscape

- Data acquisition system design goals & challenges
- Component & topology selection with Analog Engineer's Calculator
- Design iterations with TINA-TI simulator
 - Basic functionality
 - Noise analysis / ENOBs
 - Linearity / frequency response
 - Stability (Phase- & gain margin)
 - Settling time
- Summary

Component & topology selection Identifying the right ADC

Example specification / design goals:

- **Channel Count: 8 Channels**
- Bandwidth and Sampling Rate:40 kHz, > 100 kSamples/s
- Input Full Scale Range (FSR) : +- 10V FSR
- Common Mode Voltage:~ 0V common mode
- Target Resolution/ENOB: > 16 Bit
- Input Impedance (ZIN) Target: > 100 kOhm

TI Space Products (Rev. I)

Find the right parts for your space grade design with our updated Space Products Guide

Download (PDF, 4292KB) http://www.ti.com/spaceguide

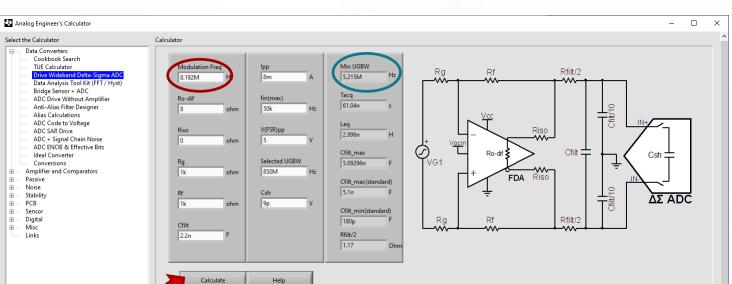
https://www.ti.com/applications/industrial/aerospace-defense/space/overview.html

Precision ADCs (\leq 10 MSPS)

Part Number ¹	Military Spec	Qualification Level	TID Char. (krad)	TID RLAT (krad)	SEL (MeV•cm²/ mg)	Res. (Bits)	Sample Rate (Max) (kSPS)	# of Ch	Multi-Ch Config.	SNR (dB)	INL (Max) (± LSB)	Input Type	Ref. Voltage (V)		Туре	Package Group	ECCN ²
ADC128S102QML-SP	<u>5962-07227</u>	QMLV-RHA	100	100	120	12	1000	8	Multiplexed	72	1.1	Single ended	Supply	2.3	SAR	CFP, Die	EAR99 [†]
ADS1278-SP	-	TI Space Grade	75	50	68	24	128	8	Simultaneous	111	201.4	Differential	External	530	ΔΣ	CQFP	EAR99 [‡]
ADS1282-SP	<u>5962-14231</u>	QMLV-RHA	50	50	60	32	4	2	Multiplexed	130	_	Differential	External	25	ΔΣ	CFP	EAR99 [‡]

Component & topology selection

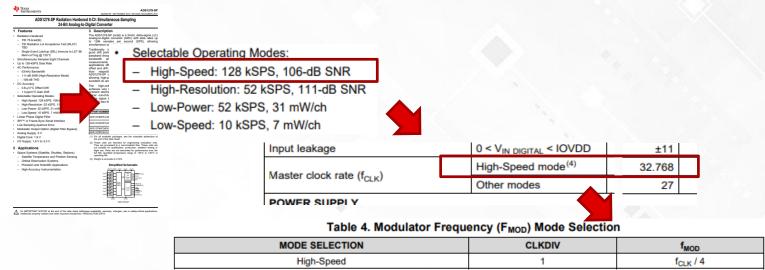
Identifying the right op amp


Example specification / design goals:

- **Channel Count: 8 Channels** •
- Bandwidth and Sampling Rate:40 kHz, > 100 kSamples/s
- Input Full Scale Range (FSR) : +- 10V FSR
- Common Mode Voltage:~ 0V common mode
- Target Resolution/ENOB: > 16 Bit
- Input Impedance (ZIN) Target: > 100 kOhm

Step 2:

Enter modulation frequency of 8.192 MHz in ANALOG-ENGINEER'S CALCULATOR tool*,


click 'Calculate' and read back the Min UGBW = 5.215 MHz.

*Download for free @ https://www.ti.com/tool/ANALOG-ENGINEER-CALC

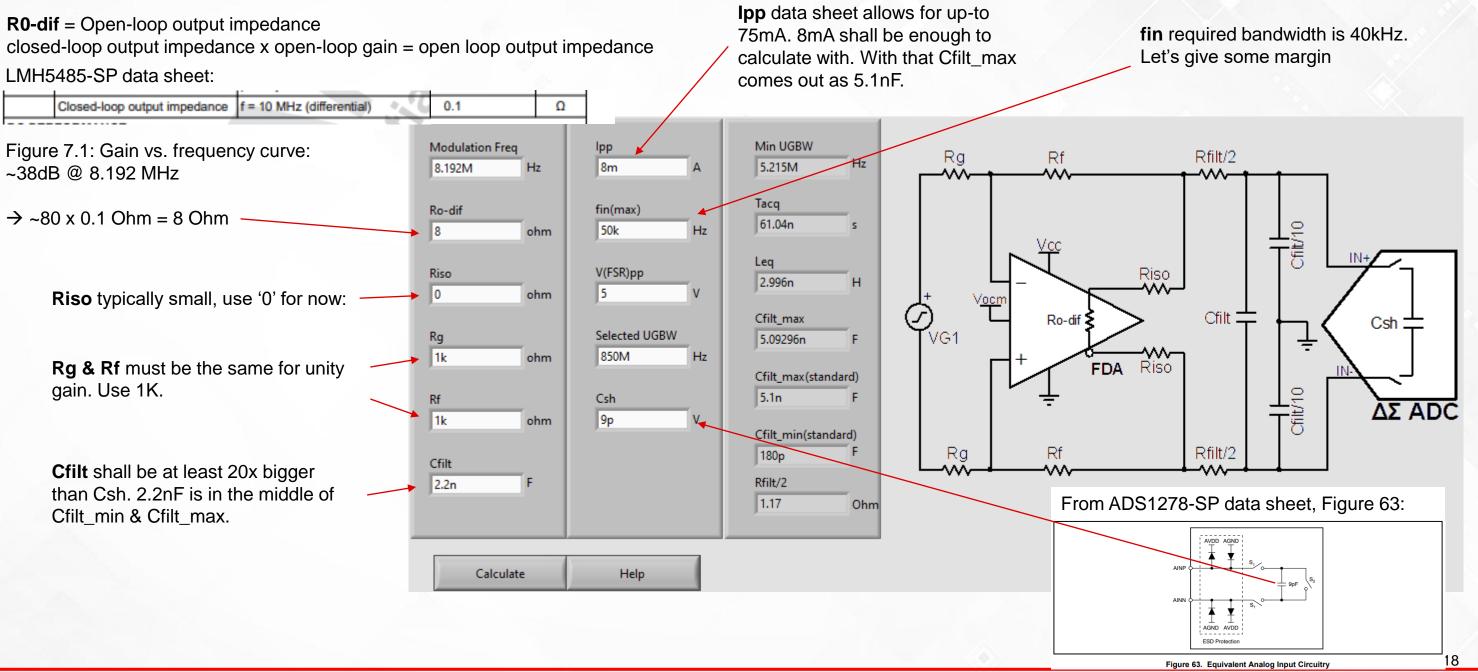
Step 1:

Read modulation frequency from ADS1278-SP data sheet:

MODE SELECTION	
High-Speed	

Step 3:

Select OpAmp. E.g. LMH5485-SP


Fully Differential Amplifiers (FDAs)

Part Number ¹	Military Spec	Qualifi- cation Level	TID Char. (krad)		SEL (MeV•cm²/ mg)	(V)	(V)	(MHz)		Min. A _{CL} (MHz)		V _{n at} Flatband (nV/√Hz)		Rail-t Rai
LMH5401-SP	5962-17214	QMLV-RHA	100	100	85	3.15	5.25	6500	4100	5	17500	1.25	72	No
LMH5485-SP	5962-19204	QMLV-RHA	100	100	75	2.7	5.4	850	620	1	1500	2.2	100	In to V-
THS4511-SP	5962-07222	QMLV	150	-	Bipolar	3.75	5.25	3000	1100	1	5100	2	80	In to \
THS4513-SP	5962-07223	QMLV	150	-	Bipolar	3	5.5	3000	1100	1	5100	2.2	90	No
														17

32.768MHz / 4 = 8.192MHz

Texas Instruments

Getting started with the design

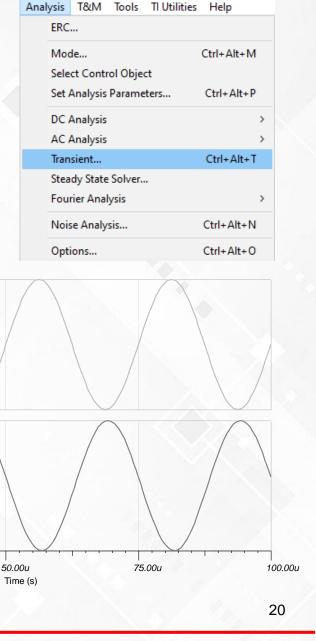
Texas Instruments

Agenda

Analog Front End design for data acquisition systems with TI's tooling landscape

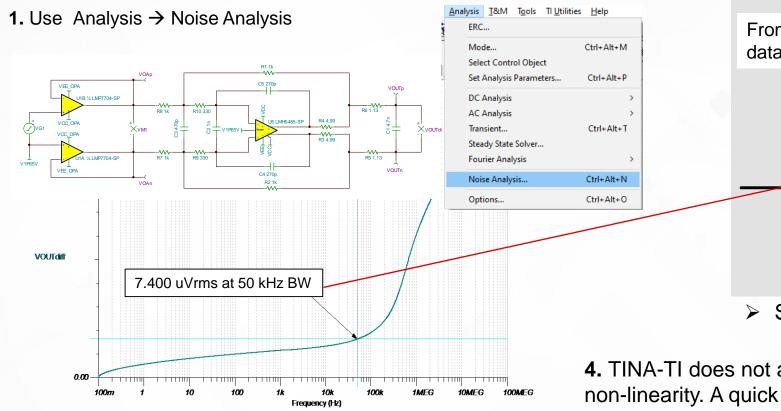
- Data acquisition system design goals & challenges
- Component & topology selection with Analog Engineer's Calculator
- Design iterations with TINA-TI simulator
 - Basic functionality
 - Noise analysis / ENOBs
 - Linearity / frequency response
 - Stability (Phase- & gain margin)
 - Settling time
- Summary

Basic functionality: Time domain response

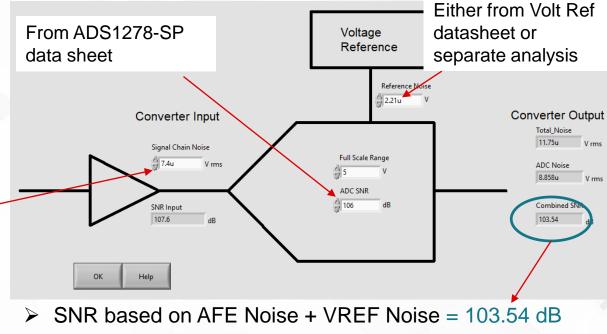

Complete the design for simulation:

- Add VG1 with 40 kHz, \pm 10V.
- Add attenuation Stage for \pm 10V Input (with $Z_{IN} \ge 100 \text{ k}\Omega \parallel 10 \text{ pF}$): $\pm 2.5 \text{ V}$
- Add Input buffer stage based on LMP7704-SP

¥ao O O O VCC 5.2 ↓ VCC 5.2 ↓ V1 -5.2 ± V2 1.652928 ₩V4 5 ± V5 0 R1 1k 10.00 \sim VOAp 11 102k 10 C5 270p VEE_OPA VG1 VOUTp 8 U1B 1/4 LMP7704-SP ~~~ R6 1.13 VG1 R10 330 ۲<u>۲</u> 27p R4 4.99 U5 LMH5485-SP VCC_OPA XVM2 312 XVM1 -XVOUTdiff 8 ---- V1P65V 5- $\overline{\mathbf{D}}$ VCC OPA -^///-R3 4.99 \sim ~~~~ -10.00 1A ¼ LMP7704-SP R9 330 R5 1.13 2.51 V1P65V VOUTn VEE OPA C4 270p R2 1k VOAn VOUTdiff Input Buffer Stage **Attenuation Stage ADC Driver** (Only for \pm 10V Input) (with Ultra-Low I_B OpAmp) (using Fully-Diff Amp) RIN > 100 kOhm-2.51 0.00 25.00u


Use Analysis → Transient...

•


Noise and ENOB

3. Use of standard conversion formula (ENOB = (SNR - 1.76)/6.02 dB) to calculate ENOB = 16.91 Bits

2. Enter data into ANALOG-ENGINEER'S CALCULATOR tool

'Data Converters' → 'ADC + Signal Chain Noise':

4. TINA-TI does not account for non-linearity. A quick look at the THD is necessary:

LMH5485-SP data sheet shows distortion from HD2 of -118 dBc for 50 kHz and below. Much lower than 103.54dB identified above and can be ignored.

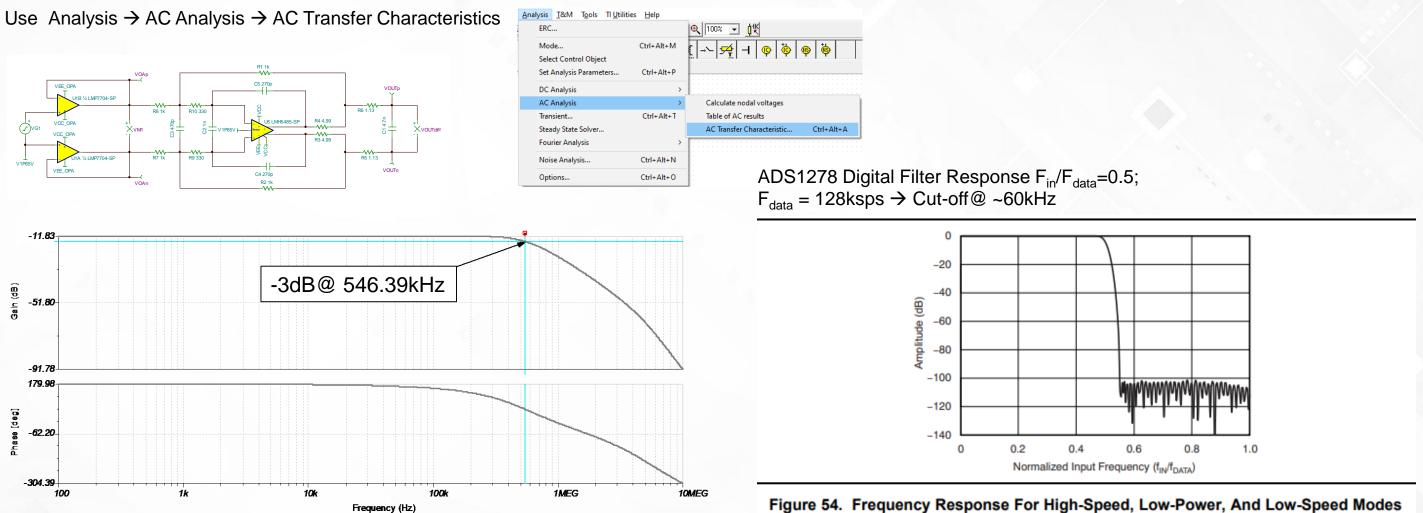



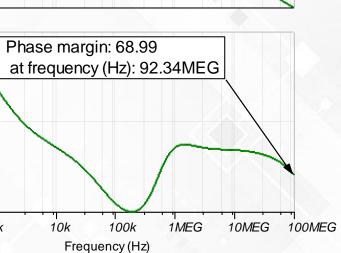
Figure 2-7. LMH5485-SP Data Sheet Shows THD of About -118 dBc for f = 50 kHz in its Harmonic **Distortion Over Frequency Chart**

21

Texas Instruments

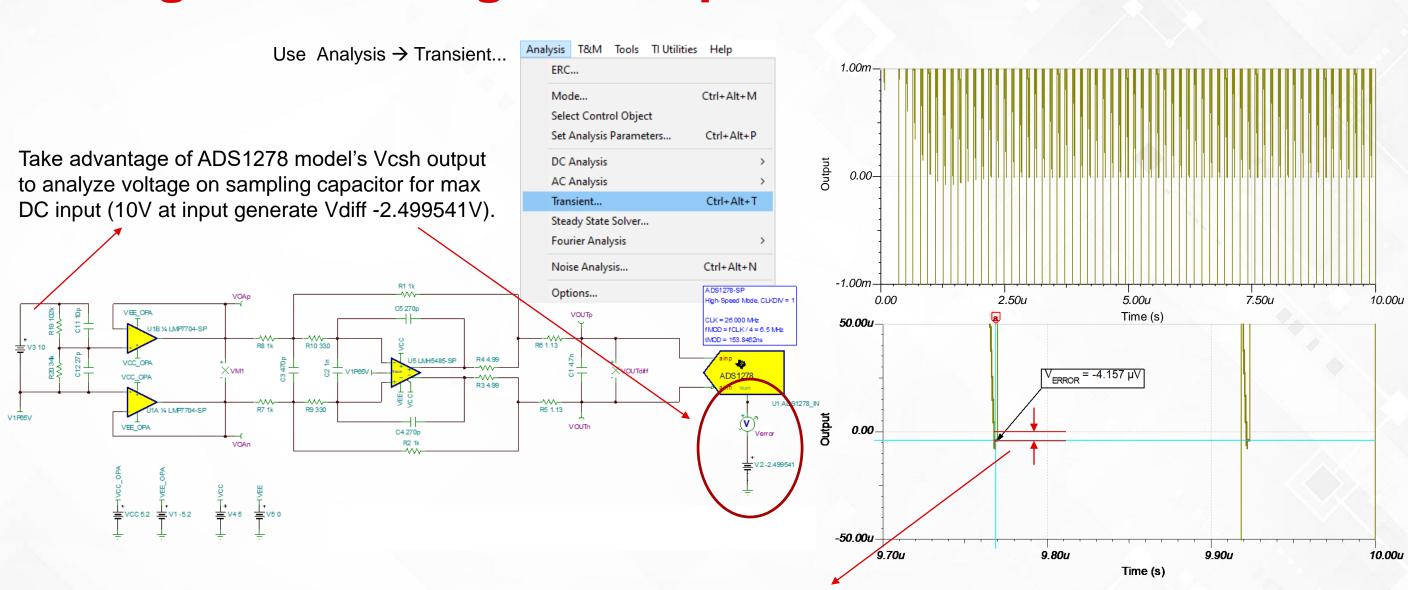
Linearity / frequency response

- -3 dB Bandwidth 546.39 kHz for AFE •
 - very well above the cut off frequency of 60kHz of ADS1278's digital filter response. \rightarrow Meets the linearity requirement
 - f_{mod} = 8.192 MHz . Provides 60dB+ anti-aliasing suppression for signal components at 4.096MHz and higher.


Stability analysis of closed loop system

T<u>o</u>ols TI <u>U</u>tilities <u>H</u>elp T&M Use Analysis \rightarrow AC Analysis \rightarrow AC Transfer Characteristics 🔍 100% 🖵 👯 Ctrl+Alt+M Select Control Object Ctrl+Alt+P Set Analysis Parameters, 118.31 To enable simulation from DC to high frequency: DC Analysis Add L1 & L2 with Terra Henry (open for AC / short for DC) AC Analysis Calculate nodal voltage Transient... Ctrl+Alt+T Table of AC results And C7 & C8 with Terra Farad (short for AC / open for DC) Steady State Solver.. AC Transfer Characteristic.. Ctrl+Alt+A Fourier Analysis Noise Analysis. Ctrl+Alt+N Gain (dB) Ctrl+Alt+O Options.. OPA 58.86-VCC_ R1 1k VCC 5.2 ± V4 3.3 ± V5 0 ± V1 -5.2 $\sim \sim$ C5 270p 0.00-179.45 \sim \sim VCVS1 R8 1k R10 330 R6 1.13 R4 4.99 4.7n U5 LMH5485-SP ~~~ G g *108.88*-LoopGain Vocm XAOL ~~~~ 5 R3 4.99 \sim R7 1k R9 330 R5 1.13 VIN VIN-C4 270p 38.31 R2 1k 10 100 1k

> Phase Margin for Ain+ and Ain- Amplifier paths, 68.99 Deg @ cross-over point \geq


Dip in phase margin at ~150KHz might allow for some ringing...

Settling time driving ADC input

- Sampled output voltage error of ADS1278 is -4.157 uV after full settling of step input.
- This error appears as a gain error, and reduces to approximately 0V at 0V input.
- Gain Error $\sim [(2.5V-4.157e-6V)/2.5V-1]*100 = -0.00016628\% = -1.6628 \text{ ppm} (\sim 20 \text{ bit resolution})$ \triangleright

Agenda

Analog Front End design for data acquisition systems with TI's tooling landscape

- Data acquisition system design goals & challenges
- Component & topology selection with Analog Engineer's Calculator
- Design iterations with TINA-TI simulator
 - Basic functionality
 - Noise analysis / ENOBs
 - Linearity / frequency response
 - Stability (Phase- & gain margin)
 - Settling time
- Summary

Summary

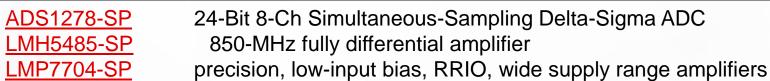
- Designing the analog front end is a multi-dimensional challenge and does typically require an iterative development process.
- TI products, available simulation models and tools enable designers:
 - to identify a good starting point quickly
 - quick and easy validation of several system aspects such as frequency response, stability, noise levels, • settling times, etc.:
 - Quick understanding of the design behavior
 - Fast design iterations •
 - High confidence into design success prior start of actual hardware design •
- Tools are downloadable for free
- Technical support available via e2e forum or your local TI representatives
- All details of this presentation are described in the application note:

Analog Front-End Design With Texas Instruments' Tooling Landscape

ADS1278-SP AFE Test Board Performance vs. power of four different AFE architectures

Features

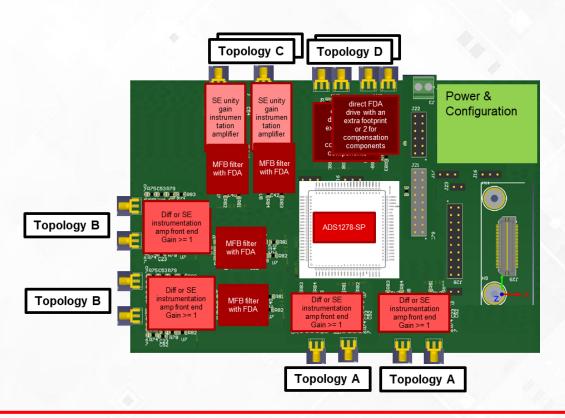
- Multiple configuration options for power, clocking, V_{RFF} & V_{OCM}
- Dual channel inputs with four different AFE topologies:
 - **Direct FDA** •
 - Instrumentation Amplifier: Direct or + MFB FDA
 - SE Input Buffer + MFB FDA


Target Applications

- Satellite precision data acquisition systems:
- Thermal control of optical instruments / camera systems
- Linear displacement (position) sensing / motion control
- Gyro sensors
- Atomic clock

Devices

.


LM4050QML-SP

- LMH6628QML-SP Dual Wideband, Low Noise, Voltage Feedback Op Amp
 - 2.5-V or 5-V shunt voltage reference
- TPS7H1101A-SP 1.5-V to 7-V input, 3-A low-noise low-dropout (LDO) regulator
- TPS50601A-SP 3-V to 7-V input, 6-A synchronous step-down converter

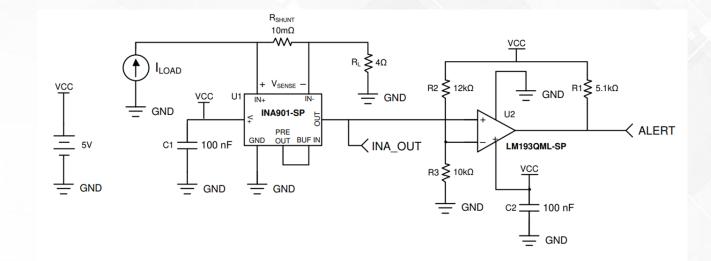
Benefits

- High resolution of up to 18 ENOB across wide temperature range
- High PSRR and rail-to-rail capabilities enable simplified power supply design (Unipolar supply, no LDO)
- Low power consumption & board size per channel

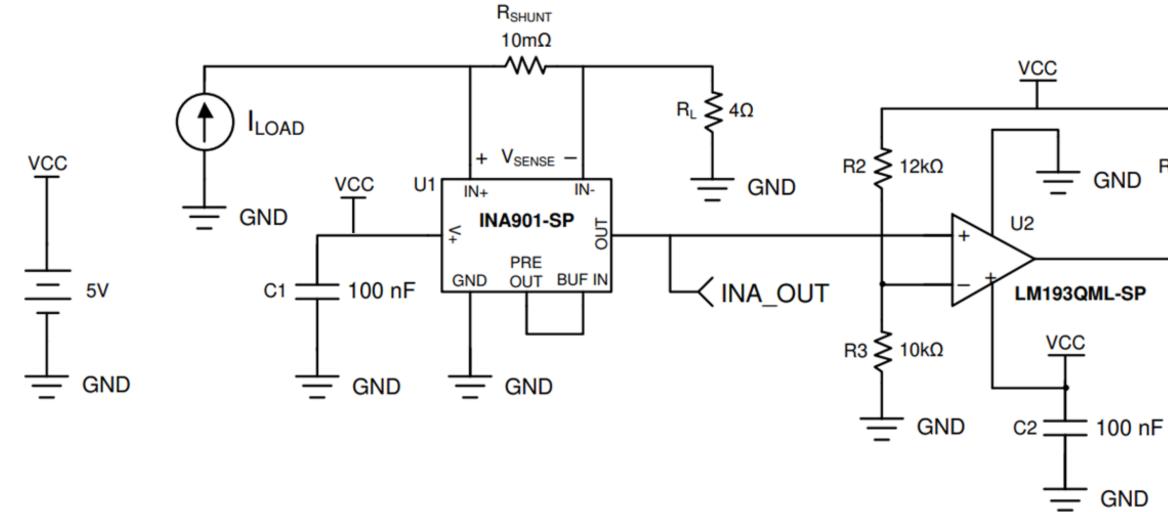
In development

Texas Instruments

Space-grade, 50-krad, overcurrent eventdetection circuit


Example from TI's "Spacecraft Circuit Design Handbook"

Web Address with more collateral: <u>https://www.ti.com/applications/industrial/aerospace-defense/space/overview.html</u>


Problem and proposal

- Space radiation can lead to latch-up
 - Parasitic SCR triggers
 - Steep current rise
 - Component death by overheat
- Detected "quickly" -> no problem
 - Unidirectional current sense can detect abnormal behavior
 - Over current events could then trigger power cycling
- This circuit example shows high side current sense
 - Nominal currents from 5A to 10A
 - Sense resistor of only 10 m Ω (P_{max} < 1W)
 - Comparator triggers ALERT at I > 11A (V_{OC} > 2.2 V)

Circuit diagram

- GND ^{R1}≸ ^{5.1kΩ} ALERT

Comments

- INA901-SP is a space grade precise current sense amplifier
- INA901 generates in this circuit 200 mV / A
- LM193QML-SP works as voltage comparator for immediate action – Threshold set to 2.2 V (11 A)
- Signal could be further processed in ADC and MCU (FFT, fast fourier transform)
- Unusual power pattern could then trigger actions as well
 - Transmit to ground station
 - Ground station could decide what to do

Design process

- Steps of circuit design shown in "Spacecraft Circuit Design Handbook"
- Calculation of shunt R1
- Calculation of R2 and R3 for correct trigger
- Calculation of trigger (offset) error depending on
 - Set threshold
 - Input current
- Find the book here: <u>https://www.ti.com/lit/eb/slyy214/slyy214.pdf</u> lacksquare

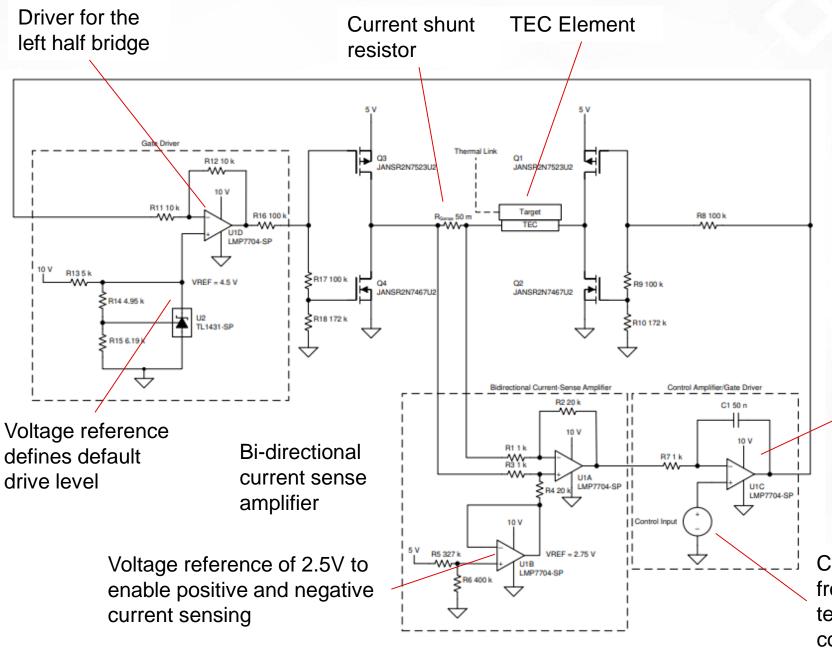
Linear Thermoelectric Cooler (TEC) **Driver Circuit with high accuracy and** stability and minimized noise emissions

TEXAS INSTRUMENTS

Space-grade, 100-krad, linear thermoelectric cooler (TEC) driver circuit

- Star tracker systems ٠
- **Temperature regulation CCD-based Infrared Camera**
- Laser Communication Systems
- Wide Field Planetary Camera ٠

Design challenge/problem statement

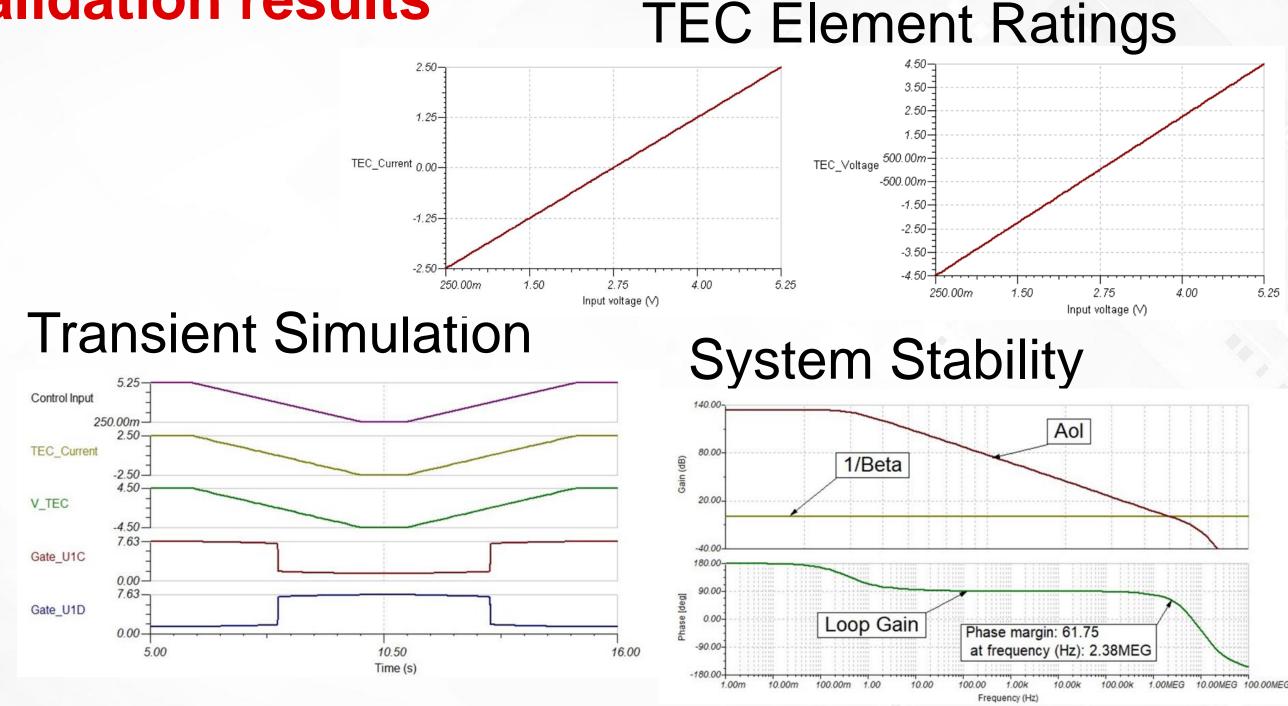

- Survive 100-krad (Si) total dose, high immunity to SEL ≥ 75MeV-cm2 /mg
- Bi-directional current control (+/- 2.5A)
- Avoid any hard switching to avoid EMI
- Keep board area requirements as low as possible
- High accuracy (1mA)

Target End Equipment:

- Laser communications payload
- Optical imaging payload
- Star tracker
- Satellite motor & actuator drive

Solution description

A Linear H-Bridge driver provides:


- 1. systems.
- 2. High accuracy: within 1mA
- Low design complexity: 3. complex components
- Control amplifier • handles the feedback from the current sense amplifier
- Drives the right half bridge directly
- **Control** input from outer temperature control loop

Low noise: TECs are usually used in high accuracy imaging

> No EMI is induced since there is no switching Current control error No MCU, only non-

Validation results

Space-grade, 100-krad, linear thermoelectric cooler (TEC) driver circuit

Summary

- The design meets all design criteria in terms of max current rating and voltage rating of the TEC, high accuracy, stability and radiation hardness
- The linear driver avoids any switching and keeps **EMI low**
- Low complexity with very small board space requirements (e.g. the four OpAmps are integrated in a single package). Only two voltage rails required.

 Application brief with design steps under <u>Space-Grade, 100-krad, Linear Thermoelectric Cooler</u> (TEC) Driver Circuit

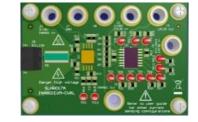
Rad-Hard and Rad-Tolerant Current Measurement Solutions

INA901-SP

Very Wide Common Voltage Current Sense Amplifier with Split Stage for Filtering

Features

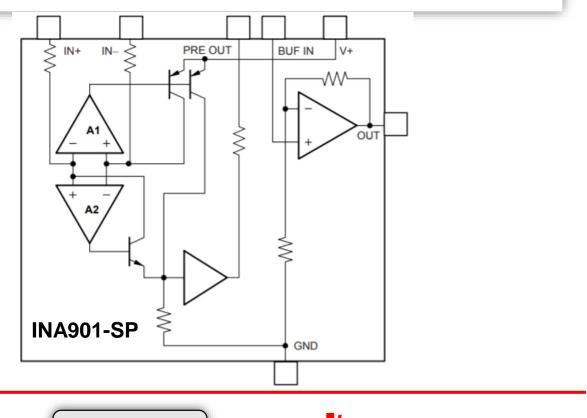
- Radiation: TID 50krad RHA, SEL 85 MeV.cm²/mg (125 C)
- -15V to 65V common-mode range independent of supply
- 2.7V to 16V supply
- Split stages for filtering
- Bandwidth up to 130kHz
- Gain: 20V/V
- Package: Ceramic 8-lead HKX 6.5mm x 6.5mm
- Option for KGD


Applications

- Current Monitor for current mode control DC-DC Convertor
- Current Measurement in an H-Bridge for Motor Control
- Latching Current Limiters on High common mode bus
- Current sensing on GaN modules for increased efficiency

*4*3,72-

Tools and Resources


- Product folder: LINK
- SMD datasheet: LINK
- Evaluation board (EVM): LINK
- Radiation reports: LINK

\oslash

Benefits

- Eliminates need for additional protective components in the event of CMR reversals
- Preserves buffered voltage output and saves using an additional op amp
- Simplifies design of current control loops
- Enables a flexible circuit design
- QMLV Qualified 5962-1821001VXC

HS Analog

Interface

Clocking

INA240-SEP

-4V to 80V Bi-Directional with PWM Rejection CSA For Large

Common-Mode Transients

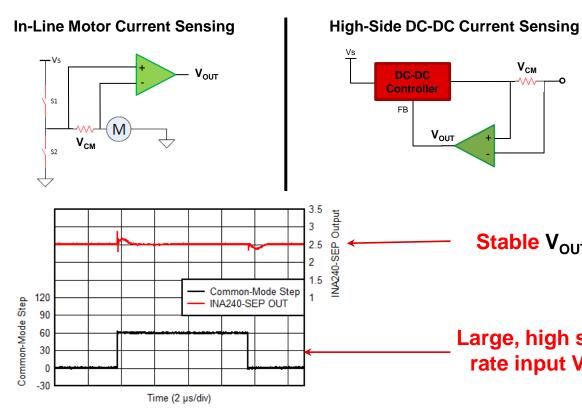
Features

- TID Characterization (ELDRS Free) to 30 krad(Si)
- SEL Immune to LET = 43 MeV·cm²/mg at 125°C
- High Accuracy
 - -Input Offset Voltage: 25 µV (max) with 250 nV/°C Max. Drift -Gain Error: ±0.25% (max) with 2.5 ppm/°C Max. Drift
- Available in Military) Temperature Range -55°C to 125°C
- Fixed Gain: 20 V/V
- Package: 8-Pin TSSOP (3.0 × 4.4 mm)

Applications

- Low Earth Orbit Space Applications
- Power Supervision
- Overcurrent and Undercurrent Detection
- Satellites Telemetry
- Motor Control Loops

K

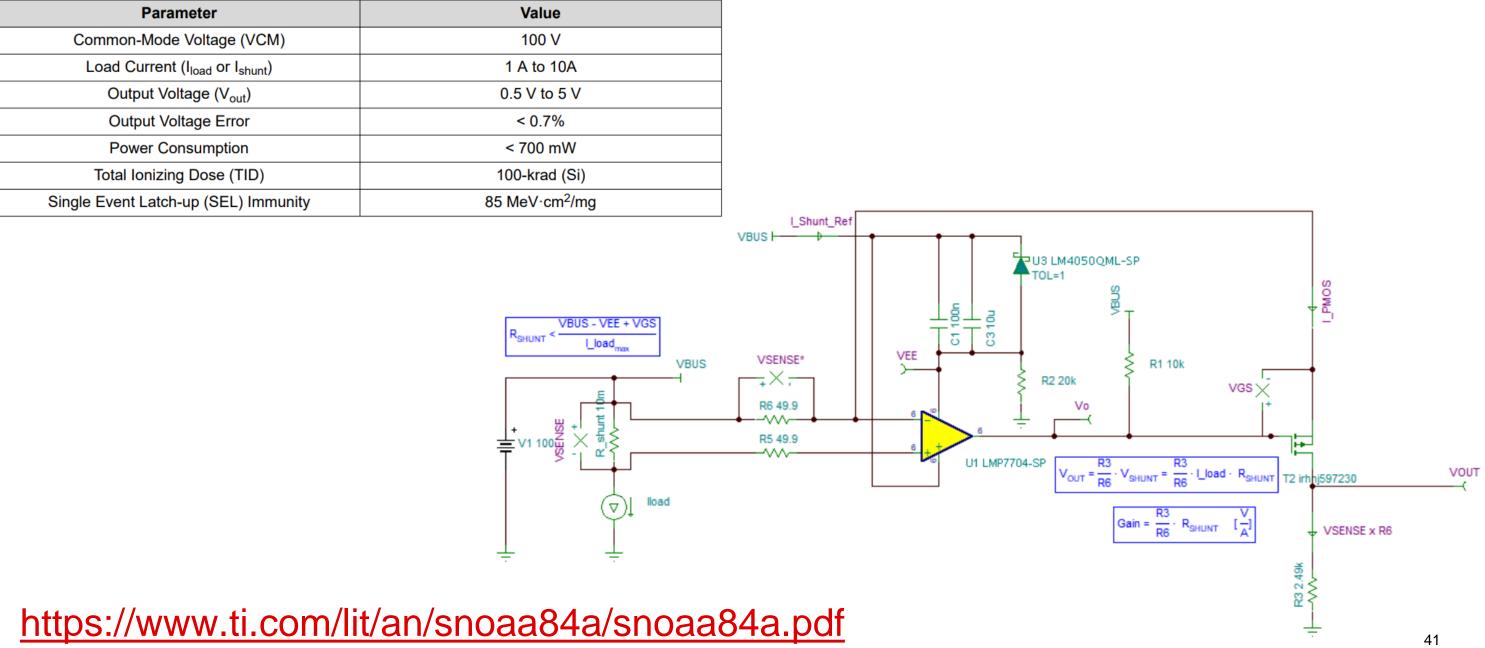

Tools and Resources

- Product folder: LINK
- Military Datasheet (VID): LINK
- Reliability & Radiation Reports: LINK

\oslash

Benefits

- Radiation Lot Acceptance Testing (RLAT) to 20 krad(Si)
- Vendor Item Drawing (VID) V62/18615
- Large input range to integrate into increasing common-mode voltage applications
- High accuracy minimizes system margins ٠
- High CMRR allows for direct in-line motor current sensing



Stable Vour!

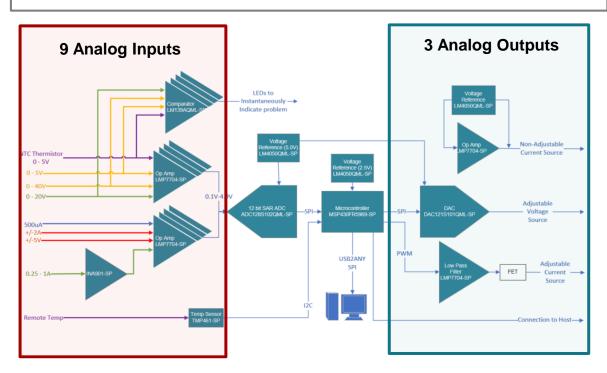
Large, high slew rate input V_{CM}

High Common Mode Current Measurement

https://www.ti.com/lit/an/snoaa84a/snoaa84a.pdf

Space Grade Satellite Telemetry Reference Design **TIDA-010197**

Benefits


- All inclusive telemetry module to monitor a variety of measurements:
 - Voltage, Current, Temperature, Sensors (Current Output)
- Options for "5 V Rail" or "5 V and 12V Rails" •
- Multiple integration options for different size, cost, and accuracy needs •
 - Integrated MCU ADC (50~75 krad and 72 MeV)
 - ADC128S102QML-SP 12-Bit ADC (100 krad and 75 MeV)

Target Applications

- Satellites
 - Health Monitoring / Telemetry •
 - Power Monitoring on Busses
 - **RF PA Biasing**
 - **TEC Monitor**
 - Attitude & Orbit Control System (AOCS)

Devices

- ADC128S102QML-SP 8-Ch, 12-bit ADC
- FRAM Mixed-Signal Microcontroller MSP430FR5969-SP ٠
- Precision Quad Op Amp LMP7704-SP •
- LM158QML-SP GP Dual Op Amp ٠
- DAC121S101QML-SP 12-Bit DAC •
- Shunt Voltage Reference LM4050QML-SP •
- TMP461-SP Digital Output (I2C) Temp Sensor ٠
- Current Sense Amp INA901-SP •
- LM139QML-SP Quad Comparator •

Web address with more collateral: <u>https://www.ti.com/applications/industrial/aerospace-defense/space/overview.html</u> The "Spacecraft Circuit Design Handbook": <u>https://www.ti.com/lit/eb/slyy214/slyy214.pdf</u>

Thanks

