

CDx4HC(T)273 High-Speed CMOS Logic Octal D-Type Flip-Flop with Reset

1 Features

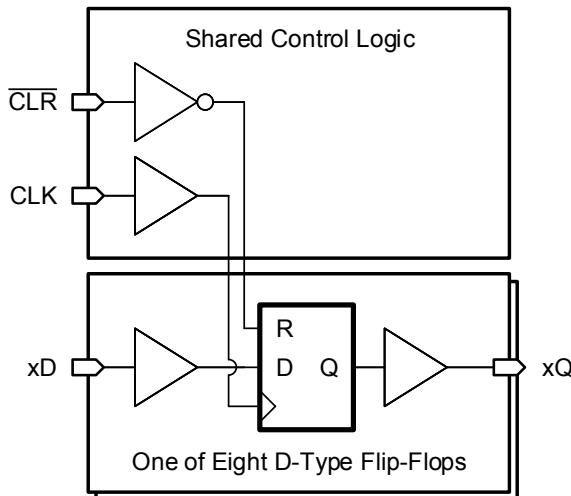
- Common clock and asynchronous controller reset
- Positive edge triggering
- Buffered inputs
- Fanout (over temperature range)
 - Standard outputs: 10 LSTTL loads
 - Bus driver outputs: 15 LSTTL loads
- Wide operating temperature range: -55°C to 125°C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL Logic ICs
- HC types:
 - 2V to 6V operation
 - High noise immunity: $N_{IL} = 30\%$, $N_{IH} = 30\%$ of V_{CC} at $V_{CC} = 5\text{V}$
- HCT types:
 - 4.5V to 5.5V operation
 - Direct LSTTL input logic compatibility, $V_{IL} = 0.8\text{V}$ (maximum), $V_{IH} = 2\text{V}$ (minimum)
 - CMOS input compatibility, $I_I \leq 1\mu\text{A}$ at V_{OL}, V_{OH}

2 Applications

- Synchronize data to clock
- Simple memory – 8 bits

3 Description

The CD54HC273, CD74HC273, CD54HCT273, and CD74HCT273 high speed octal D-Type flip-flops with a direct clear input are manufactured with silicon-gate CMOS technology. The devices possess the low power consumption of standard CMOS integrated circuits.


Information at the D input transfers to the Q outputs on the positive-going edge of the clock pulse. All eight flip-flops are controlled by a common clock (CLK) and a common reset (CLR). Resetting is accomplished by a low voltage level independent of the clock. All eight Q outputs reset to a logic 0.

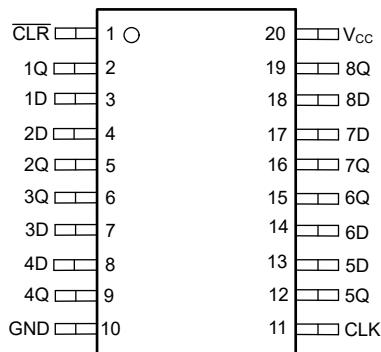
Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
CD54HC273F	J (CDIP, 20)	26.92mm \times 6.92mm
CD74HC273M	DW (SOIC, 20)	12.80mm \times 7.50mm
CD74HC273E	N (PDIP, 20)	25.40mm \times 6.35mm
CD74HCT273M	DW (SOIC, 20)	12.80mm \times 7.50mm
CD74HCT273	N (PDIP, 20)	25.40mm \times 6.35mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(2) The package size (length \times width) is a nominal value and includes pins, where applicable.

Functional Block Diagram



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	7.4 Device Functional Modes.....	14
2 Applications	1	8 Application and Implementation	15
3 Description	1	8.1 Application Information.....	15
4 Pin Configuration and Functions	3	8.2 Typical Application.....	15
5 Specifications	4	8.3 Power Supply Recommendations.....	19
5.1 Absolute Maximum Ratings.....	4	8.4 Layout.....	19
5.2 Recommended Operating Conditions.....	4	9 Device and Documentation Support	21
5.3 Thermal Information.....	4	9.1 Documentation Support.....	21
5.4 Electrical Characteristics.....	5	9.2 Receiving Notification of Documentation Updates.....	21
5.5 Timing Requirements.....	6	9.3 Support Resources.....	21
5.6 Switching Characteristics.....	7	9.4 Trademarks.....	21
5.7 Typical Characteristics.....	8	9.5 Electrostatic Discharge Caution.....	21
6 Parameter Measurement Information	9	9.6 Glossary.....	21
7 Detailed Description	11	10 Revision History	21
7.1 Overview.....	11	11 Mechanical, Packaging, and Orderable Information	22
7.2 Functional Block Diagram.....	11		
7.3 Feature Description.....	12		

4 Pin Configuration and Functions

**J, DW, or N package
20-Pin CDIP, PDIP, or SOIC
Top View**

Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		
1D	3	I	Input for channel 1
1Q	2	O	Output for channel 1
2D	4	I	Input for channel 2
2Q	5	O	Output for channel 2
3D	7	I	Input for channel 3
3Q	6	O	Output for channel 3
4D	8	I	Input for channel 4
4Q	9	O	Output for channel 4
5D	13	I	Input for channel 5
5Q	12	O	Output for channel 5
6D	14	I	Input for channel 6
6Q	15	O	Output for channel 6
7D	17	I	Input for channel 7
7Q	16	O	Output for channel 7
8D	18	I	Input for channel 8
8Q	19	O	Output for channel 8
CLK	11	I	Clock for all channels, rising edge triggered
CLR	1	I	Clear for all channels, active low
GND	10	G	Ground
Vcc	20	P	Positive supply

(1) I = input, O = output, G = ground, P = power

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		–0.5	7	V
I _{IK}	Input clamp diode current	For V _I < –0.5V or V _I > V _{CC} + 0.5V		±20	mA
I _{OK}	Output clamp diode current	For V _O < –0.5V or V _O > V _{CC} + 0.5V		±20	mA
I _O	Drain current, per output	For –0.5V < V _O < V _{CC} + 0.5V		±25	mA
I _O	Output source or sink current per output pin	For V _O > –0.5V or V _O < V _{CC} + 0.5V		±25	mA
	Continuous current through V _{CC} or ground current			±50	mA
T _J	Junction temperature			150	°C
T _{stg}	Storage temperature range		–65	150	°C
	Lead temperature (Soldering 10s) (SOIC - Lead Tips Only)			300	°C

(1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 Recommended Operating Conditions

			MIN	MAX	UNIT
T _A	Temperature range		–55	125	°C
V _{CC}	Supply voltage range	HC types	2	6	V
		HCT types	4.5	5.5	
V _I , V _O	DC input or output voltage		0	V _{CC}	V
t _l	Input rise and fall time	2V		1000	
		4.5V		500	ns
		6V		400	

5.3 Thermal Information

THERMAL METRIC		DW (SOIC)	N (PDIP)	UNIT
		20 PINS	20 PINS	
R _{θJA}	Junction-to-ambient thermal resistance ⁽¹⁾	58	69	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC package thermal metrics](#) application note.

5.4 Electrical Characteristics

PARAMETER	TEST CONDITIONS (2)	V _{CC} (V)	25°C			-40°C to 85°C		-55°C to 125°C		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES										
V _{IH}	High level input voltage		2	1.5		1.5		1.5		V
			4.5	3.15		3.15		3.15		
			6	4.2		4.2		4.2		
V _{IL}	Low level input voltage		2		0.5		0.5		0.5	V
			4.5		1.35		1.35		1.35	
			6		1.8		1.8		1.8	
V _{OH}	High level output voltage CMOS loads	I _{OH} = -20µA	2	1.9		1.9		1.9		V
		I _{OH} = -20µA	4.5	4.4		4.4		4.4		
		I _{OH} = -20µA	6	5.9		5.9		5.9		
V _{OL}	High level output voltage TTL loads	I _{OH} = -4mA	4.5	3.98		3.84		3.7		V
		I _{OH} = -5.2mA	6	5.48		5.34		5.2		
		I _{OL} = 20µA	2		0.1		0.1		0.1	
V _{OL}	Low level output voltage CMOS loads	I _{OL} = 20µA	4.5		0.1	-	0.1	-	0.1	V
		I _{OL} = 20µA	6		0.1		0.1		0.1	
		I _{OL} = 4mA	4.5		0.26		0.33		0.4	
I _I	Input leakage current	V _I = V _{CC} or GND	6		±0.1		±1		±1	mA
			6		8		80		160	
			6							
HCT TYPES										
V _{IH}	High level input voltage		4.5 to 5.5	2		2		2		V
V _{IL}	Low level input voltage		4.5 to 5.5		0.8		0.8		0.8	V
V _{OH}	High level output voltage CMOS loads	I _{OH} = -20µA	4.5	4.4		4.4		4.4		V
		I _{OH} = -4mA	4.5	3.98		3.84		3.7		
V _{OL}	Low level output voltage TTL loads	I _{OL} = 20µA	4.5		0.1		0.1		0.1	V
		I _{OL} = 4mA	4.5		0.26		0.33		0.4	
I _I	Input leakage current	V _I = V _{CC} or GND	5.5		±0.1		±1		±1	µA
I _{CC}	Quiescent device current	V _I = V _{CC} or GND	5.5		8		80		160	µA

5.4 Electrical Characteristics (continued)

PARAMETER	TEST CONDITIONS ⁽²⁾	V _{CC} (V)	25°C			-40°C to 85°C		-55°C to 125°C		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
ΔI_{CC} ⁽¹⁾	CLR input held at V _{CC} –2.1	4.5 to 5.5		100	540		675		735	µA
	Data inputs held at V _{CC} –2.1	4.5 to 5.5		100	144		180		196	µA
	CLK inputs held at V _{CC} –2.1	4.5 to 5.5		100	540		675		735	µA

(1) For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

(2) V_I = V_{IH} or V_{IL}, unless otherwise noted.

5.5 Timing Requirements

See [Parameter Measurement Information](#)

PARAMETER	V _{CC} (V)	25°C			-40°C to 85°C		-55°C to 125°C		UNIT
		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES									
f_{MAX}	Maximum clock frequency	2	6		5		4		MHz
		4.5	30		25		20		
		6	35		29		23		
t_W	\bar{CLR} pulse width	2	60		75		90		ns
		4.5	12		15		18		
		6	10		13		15		
t_W	Clock pulse width	2	80		100		120		ns
		4.5	16		20		24		
		6	14		17		20		
t_{SU}	Set-up time data to clock	2	60		75		70		ns
		4.5	12		15		18		
		6	10		13		15		
t_H	Hold time, data to clock	2	3		3		3		ns
		4.5	3		3		3		
		6	3		3		3		
t_{REM}	Removal time, \bar{CLR} to clock	2	50		65		75		ns
		4.5	10		13		15		
		6	9		11		13		
HCT TYPES									
f_{MAX}	Maximum clock frequency	4.5	25		20		16		MHz
t_W	\bar{CLR} pulse width	4.5	12		15		18		ns
t_W	Clock pulse width	4.5	20		25		30		ns
t_{SU}	Set-up time data to clock	4.5	12		15		18		ns
t_H	Hold time, data to clock	4.5	3		3		3		ns
t_{REM}	Removal time, \bar{CLR} to clock	4.5	10		13		15		ns

5.6 Switching Characteristics

Input $t_r, t_f = 6\text{ns}$ (See [Parameter Measurement Information](#))

PARAMETER	TEST CONDITIONS	$V_{CC}(\text{V})$	25°C		-40°C to 85°C		-55°C to 125°C		UNIT
			TYP	MAX	MAX	MAX	MAX		
HC TYPES									
t_{PLH}, t_{PHL}	Propagation delay Clock to output	$C_L = 50\text{pF}$	2	150	190	225			ns
			4.5	30	38	45			
			6	26	30	38			
		$C_L = 15\text{pF}$	5	12					
t_{PHL}	Propagation delay \overline{CLR} to output	$C_L = 50\text{pF}$	2	150	190	225			ns
			4.5	30	38	45			
			6	26	30	38			
t_{TLH}, t_{THL}	Output transition time	$C_L = 50\text{pF}$	2	75	95	110			ns
			4.5	15	19	22			
			6	13	16	19			
C_{IN}	Input capacitance			10	10	10			pF
f_{MAX}	Maximum clock frequency	$C_L = 15\text{pF}$	5	60					MHz
C_{PD}	Power dissipation capacitance ^{(1) (2)}		5	25					pF
HCT TYPES									
t_{PLH}, t_{PHL}	Propagation delay, Clock to output	$C_L = 50\text{pF}$	4.5	30	38	45			ns
		$C_L = 15\text{pF}$	5	12					
t_{PHL}	Propagation delay, \overline{CLR} to output	$C_L = 50\text{pF}$	4.5	32	40	48			ns
t_{TLH}, t_{THL}	Output transition time	$C_L = 50\text{pF}$	4.5	15	19	22			ns
C_{IN}	Input capacitance			10	10	10			pF
f_{MAX}	Maximum clock frequency	$C_L = 15\text{pF}$	5	50					MHz
C_{PD}	Power dissipation capacitance ^{(1) (2)}		5	25					pF

(1) C_{PD} is used to determine the dynamic power consumption, per flip-flop

$$(2) P_D = C_{PD}V_{CC}^2f_i + \sum(C_LV_{CC}^2f_O) \quad (1)$$

where

- f_i = input frequency
- f_O = output frequency
- C_L = output load capacitance
- V_{CC} = supply voltage

5.7 Typical Characteristics

$T_A = 25^\circ\text{C}$

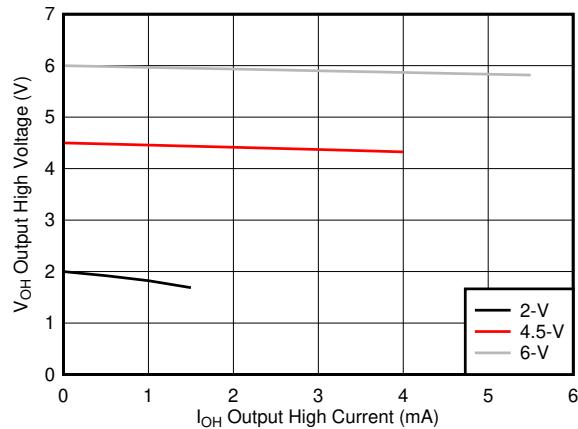
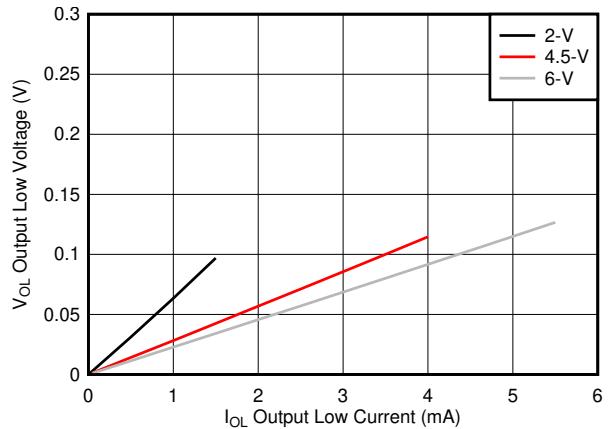
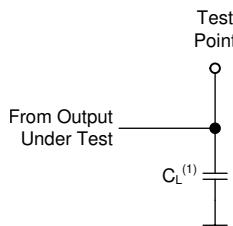


Figure 5-1. Typical Output Voltage in the High State (V_{OH})




Figure 5-2. Typical Output Voltage in the Low State (V_{OL})

6 Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, $Z_O = 50\Omega$, $t_f < 6\text{ns}$.

For clock inputs, f_{max} is measured when the input duty cycle is 50%.

The outputs are measured one at a time with one input transition per measurement.

(1) C_L includes probe and test-fixture capacitance.

Figure 6-1. Load Circuit for Push-Pull Outputs

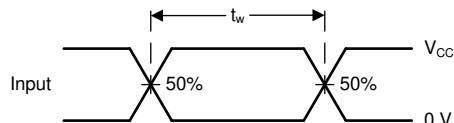


Figure 6-2. Voltage Waveforms, Standard CMOS Inputs Pulse Duration

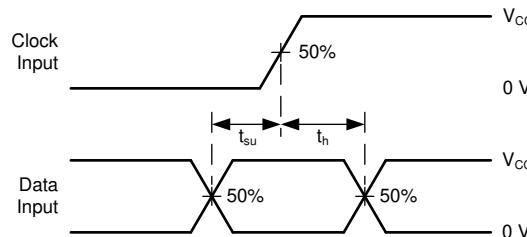
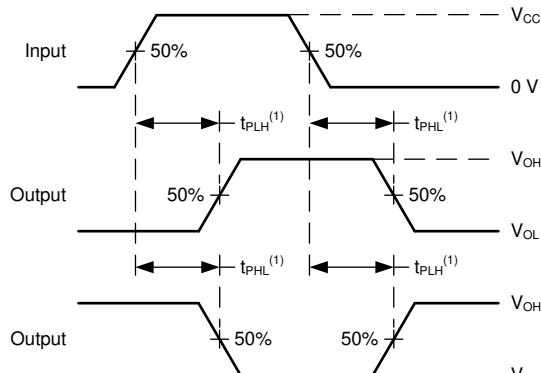
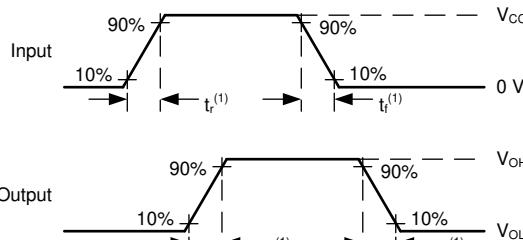




Figure 6-3. Voltage Waveforms, Standard CMOS Inputs Setup and Hold Times

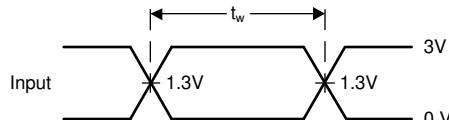
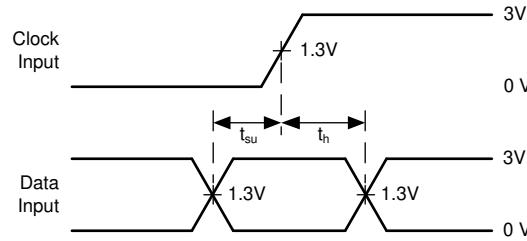

(1) The greater between t_{PLH} and t_{PHL} is the same as t_{pd} .

Figure 6-4. Voltage Waveforms, Propagation Delays for Standard CMOS Inputs



(1) The greater between t_r and t_f is the same as t_t .

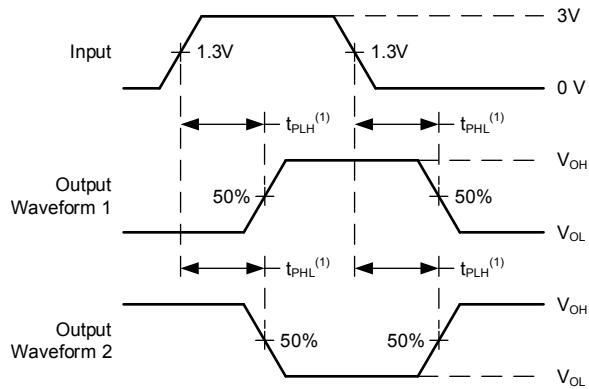

Figure 6-5. Voltage Waveforms, Input and Output Transition Times for Standard CMOS Inputs

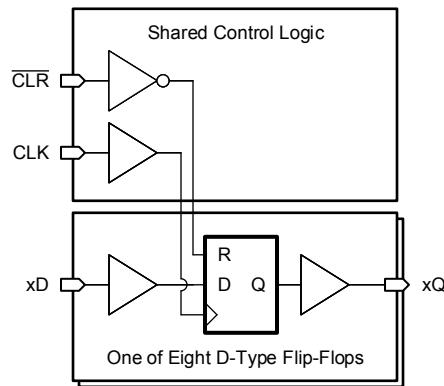
Figure 6-6. Voltage Waveforms, TTL-Compatible CMOS Inputs Pulse Duration

Figure 6-7. Voltage Waveforms, TTL-Compatible CMOS Inputs Setup and Hold Times

(1) The greater between t_{PLH} and t_{PHL} is the same as t_{pd} .

Figure 6-8. Voltage Waveforms, Propagation Delays for TTL-Compatible Inputs

7 Detailed Description


7.1 Overview

The CDxHC(T)273 contains 8 positive-edge-triggered D-type flip-flops with shared direct active low clear (\overline{CLR}) input.

Information at the data (D) inputs meeting the setup time requirements is transferred to the (Q) outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When CLK is at either the high or low level or transitioning from a high level to a low level, the D input has no effect at the output.

Information at the data (Q) outputs can be asynchronously cleared with a low level input through the clear (\overline{CLR}) pin.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Balanced CMOS Push-Pull Outputs

This device includes balanced CMOS push-pull outputs. The term *balanced* indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important to limit the output power of the device to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

Unused push-pull CMOS outputs must be left disconnected.

7.3.2 Standard CMOS Inputs

This device includes standard CMOS inputs. Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings*, and the maximum input leakage current, given in the *Electrical Characteristics*, using Ohm's law ($R = V \div I$).

Standard CMOS inputs require that input signals transition between valid logic states quickly, as defined by the input transition time or rate in the *Recommended Operating Conditions* table. Failing to meet this specification will result in excessive power consumption and could cause oscillations. More details can be found in *Implications of Slow or Floating CMOS Inputs*.

Do not leave standard CMOS inputs floating at any time during operation. Unused inputs must be terminated at V_{CC} or GND. If a system will not be actively driving an input at all times, then a pull-up or pull-down resistor can be added to provide a valid input voltage during these times. The resistor value will depend on multiple factors; a $10k\Omega$ resistor, however, is recommended and will typically meet all requirements.

7.3.3 TTL-Compatible CMOS Inputs

This device includes TTL-compatible CMOS inputs. These inputs are specifically designed to interface with TTL logic devices by having a reduced input voltage threshold.

TTL-compatible CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings*, and the maximum input leakage current, given in the *Electrical Characteristics*, using Ohm's law ($R = V \div I$).

TTL-compatible CMOS inputs require that input signals transition between valid logic states quickly, as defined by the input transition time or rate in the *Recommended Operating Conditions* table. Failing to meet this specification will result in excessive power consumption and could cause oscillations. More details can be found in the *Implications of Slow or Floating CMOS Inputs* application report.

Do not leave TTL-compatible CMOS inputs floating at any time during operation. Unused inputs must be terminated at V_{CC} or GND. If a system will not be actively driving an input at all times, a pull-up or pull-down resistor can be added to provide a valid input voltage during these times. The resistor value will depend on multiple factors; however, a $10k\Omega$ resistor is recommended and typically will meet all requirements.

7.3.4 Clamp Diode Structure

As shown in [Figure 7-1](#), the inputs and outputs to this device have both positive and negative clamping diodes.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Figure 7-1. Electrical Placement of Clamping Diodes for Each Input and Output

7.4 Device Functional Modes

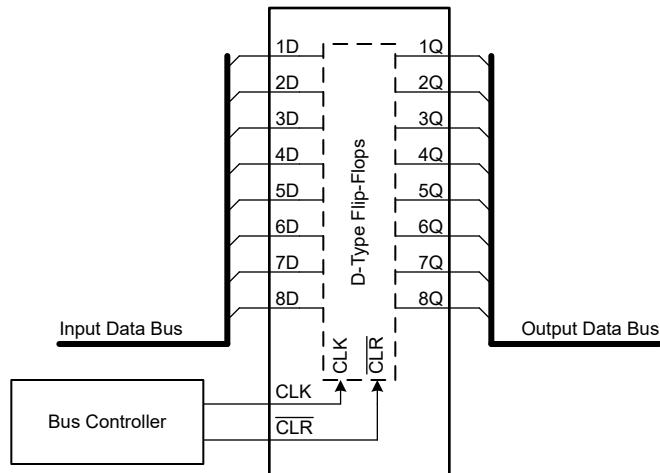
Table 7-1. Function Table

INPUTS ⁽¹⁾			OUTPUT ⁽²⁾
CLR	CLK	D	Q
L	X	X	L
H	L, H, ↓	X	Q ₀
H	↑	L	L
H	↑	H	H

(1) L = input low, H = input high, ↑ = input transitioning from low to high, ↓ = input transitioning from high to low, X = do not care

(2) L = output low, H = output high, Q₀ = previous state

8 Application and Implementation


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The CDxHC(T)273 is used to synchronize incoming data to the system clock on an 8-bit bus.

8.2 Typical Application

Figure 8-1. Typical Application Diagram

8.2.1 Design Requirements

8.2.1.1 Power Considerations

Ensure that the desired supply voltage is within the range specified in the *Electrical Characteristics*. The supply voltage sets the device electrical characteristics of the device, as described in the *Electrical Characteristics* section.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the CDxHC(T)273 plus the maximum static supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only source as much current that is provided by the positive supply source. Ensure the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings* is not exceeded.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the CDxHC(T)273 plus the maximum supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Ensure the maximum total current through GND listed in the *Absolute Maximum Ratings* is not exceeded.

The CDxHC(T)273 can drive a load with a total capacitance less than or equal to 50pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50pF.

The CDxHC(T)273 can drive a load with total resistance described by $R_L \geq V_O / I_O$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.

Total power consumption can be calculated using the information provided in the [CMOS Power Consumption and Cpd Calculation application note](#).

Thermal increase can be calculated using the information provided in the [Thermal Characteristics of Standard Linear and Logic \(SLL\) Packages and Devices application note](#).

CAUTION

The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

8.2.1.2 Input Considerations

Input signals must cross $V_{IL(max)}$ to be considered a logic LOW, and $V_{IH(min)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the CDxHC(T)273 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A 10k Ω resistor value is often used due to these factors.

The CDxHC(T)273 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined in the Electrical Characteristics table. Slow input transitions can cause oscillations, additional power consumption, and reduction in device reliability.

Refer to the *Feature Description* for additional information regarding the inputs for this device.

8.2.1.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to the *Feature Description* section for additional information regarding the outputs for this device.

8.2.2 Detailed Design Procedure

1. Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section.
2. Verify that the capacitive load at the output is $\leq 50\text{pF}$. This is not a hard limit; by design, however, it will optimize performance. This can be accomplished by providing short, appropriately sized traces from the CDxHC(T)273 to one or more of the receiving devices.
3. Verify that the resistive load at the output is larger than $(V_{CC} / I_{O(\text{max})})\Omega$. Doing this prevents the maximum output current from the *Absolute Maximum Ratings* from being violated. Most CMOS inputs have a resistive load measured in $\text{M}\Omega$; much larger than the minimum calculated previously.
4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the [CMOS Power Consumption and Cpd Calculation application note](#).

8.2.3 Application Curve

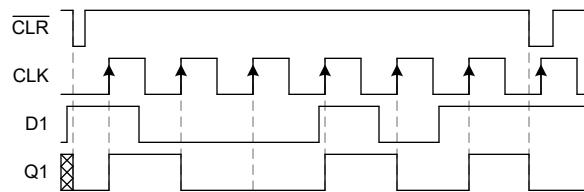


Figure 8-2. Application Timing Diagram, One Data Channel Shown

8.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the *Recommended Operating Conditions*.

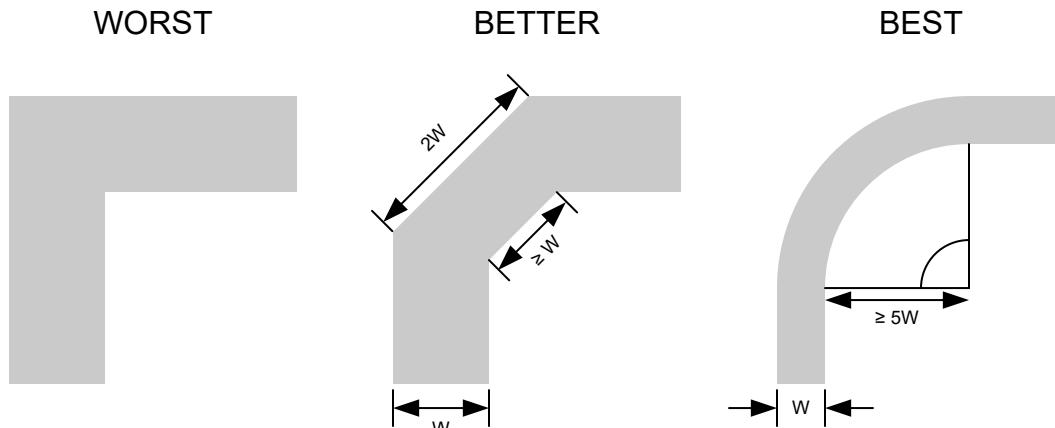
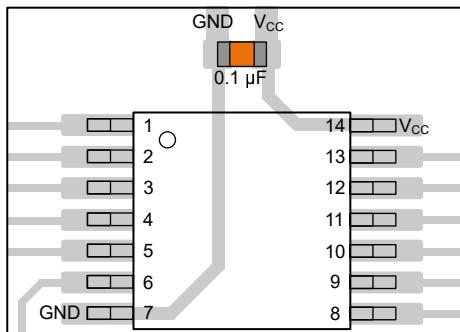
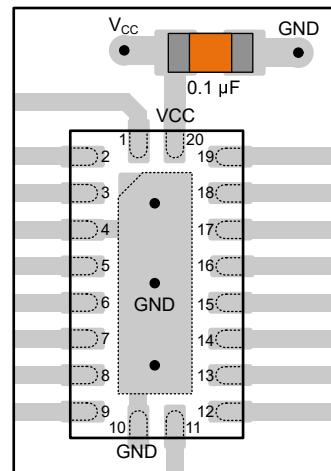
Verify that each V_{CC} terminal has a good bypass capacitor to prevent power disturbance. For the CDxHC(T)273, a $0.1\mu F$ bypass capacitor is recommended. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of $0.1\mu F$ and $1\mu F$ are commonly used in parallel.

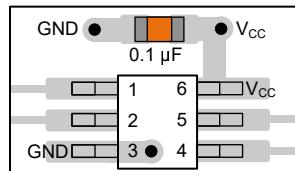
8.4 Layout

8.4.1 Layout Guidelines

- Bypass capacitor placement
 - Place near the positive supply terminal of the device
 - Provide an electrically short ground return path
 - Use wide traces to minimize impedance
 - Keep the device, capacitors, and traces on the same side of the board whenever possible
- Signal trace geometry
 - 8mil to 12mil trace width
 - Lengths less than 12cm to minimize transmission line effects
 - Avoid 90° corners for signal traces
 - Use an unbroken ground plane below signal traces
 - Flood fill areas around signal traces with ground
 - Parallel traces must be separated by at least 3x dielectric thickness
 - For traces longer than 12cm
 - Use impedance controlled traces
 - Source-terminate using a series damping resistor near the output
 - Avoid branches; buffer each signal that must branch separately

8.4.2 Layout Example


Figure 8-3. Example Trace Corners for Improved Signal Integrity

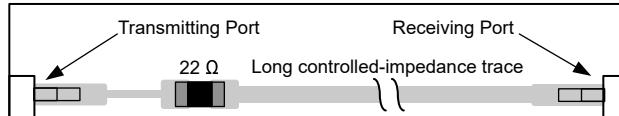

Figure 8-4. Example Bypass Capacitor Placement for TSSOP and Similar Packages

Figure 8-5. Example Bypass Capacitor Placement for WQFN and Similar Packages

Figure 8-6. Example Bypass Capacitor Placement for SOT, SC70 and Similar Packages

Figure 8-7. Example Damping Resistor Placement for Improved Signal Integrity

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, [CMOS Power Consumption and \$C_{pd}\$ Calculation](#) application note
- Texas Instruments, [Designing With Logic](#) application note
- Texas Instruments, [Thermal Characteristics of Standard Linear and Logic \(SLL\) Packages and Devices](#) application note

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

9.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (January 2022) to Revision D (October 2025)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Added <i>Applications</i> , <i>Application and Implementation</i> , <i>Typical Characteristics</i> , and <i>Typical Application Example</i> sections.....	1
• Updated <i>Power Supply Recommendations</i>	1
• Updated <i>Layout Guidelines</i>	1
• Moved <i>Layout</i> to <i>Application and Implementation</i> section.....	1
• Added Pin Functions table.....	3
• Updated Pin Configuration figure.....	3
• Updated from: <i>Prerequisite for Switching Specifications</i> to: <i>Timing Requirements</i>	6
• Moved <i>Detailed Description</i> after <i>Parameter Measurement Information</i>	10

• Added <i>Feature Description</i>	10
• Moved <i>Device Functional Modes</i> after <i>Feature Description</i>	10

Changes from Revision B (May 2003) to Revision C (January 2022)	Page
• Updated the numbering, formatting, tables, figures, and cross-references throughout the document to reflect modern data sheet standards.....	1
• Updated pin names to match current TI naming conventions. MR is now CLR, Q0 is now 1Q, D0 is now 1D, D1 is now 2D, Q1 is now 2Q, Q2 is now 3Q, D2 is now 3Q, D3 is now 4D, Q3 is now 4Q, CP is now CLK, Q4 is now 5Q, D4 is now 5D, D5 is now D6, Q5 is now 6Q, Q6 is now 7Q, D6 is now 7D, D7 is now 8D, Q7 is now 8Q.....	1

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-8772501RA	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8772501RA CD54HCT273F3A
CD54HC273F	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HC273F
CD54HC273F.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HC273F
CD54HC273F3A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8409901RA CD54HC273F3A
CD54HC273F3A.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8409901RA CD54HC273F3A
CD54HCT273F	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HCT273F
CD54HCT273F.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HCT273F
CD54HCT273F3A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8772501RA CD54HCT273F3A
CD54HCT273F3A.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8772501RA CD54HCT273F3A
CD74HC273E	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HC273E
CD74HC273E.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HC273E
CD74HC273M	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-55 to 125	HC273M
CD74HC273M96	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC273M
CD74HC273M96.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC273M
CD74HC273M96E4	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC273M
CD74HCT273E	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HCT273E
CD74HCT273E.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HCT273E
CD74HCT273EE4	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HCT273E
CD74HCT273M	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-55 to 125	HCT273M
CD74HCT273M96	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT273M
CD74HCT273M96.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT273M

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3) RoHS values: Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

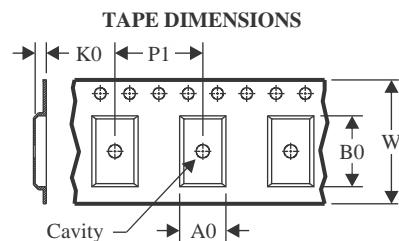
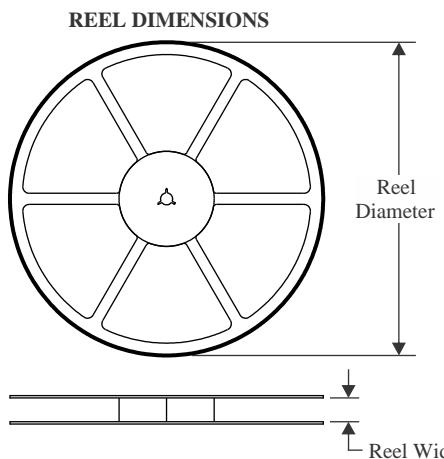
(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

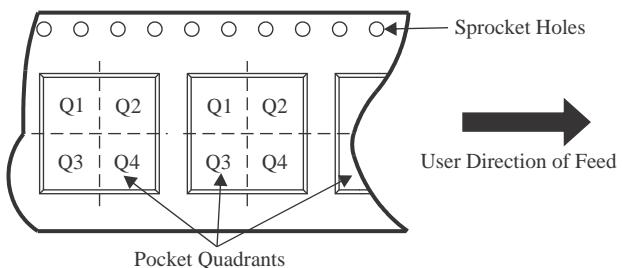
(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

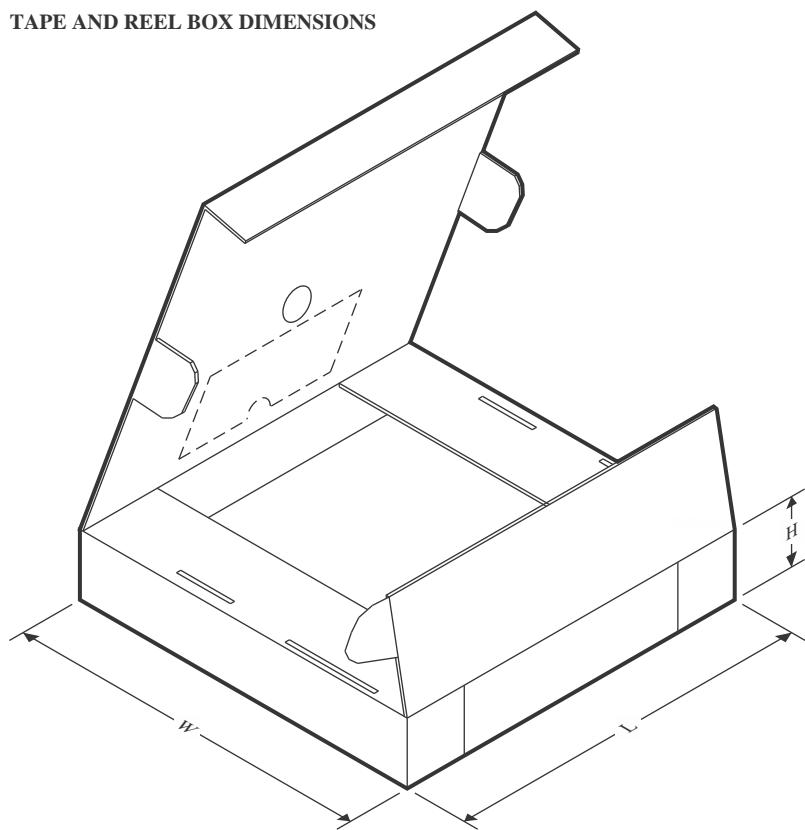


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC273, CD54HCT273, CD74HC273, CD74HCT273 :


- Catalog : [CD74HC273](#), [CD74HCT273](#)
- Military : [CD54HC273](#), [CD54HCT273](#)

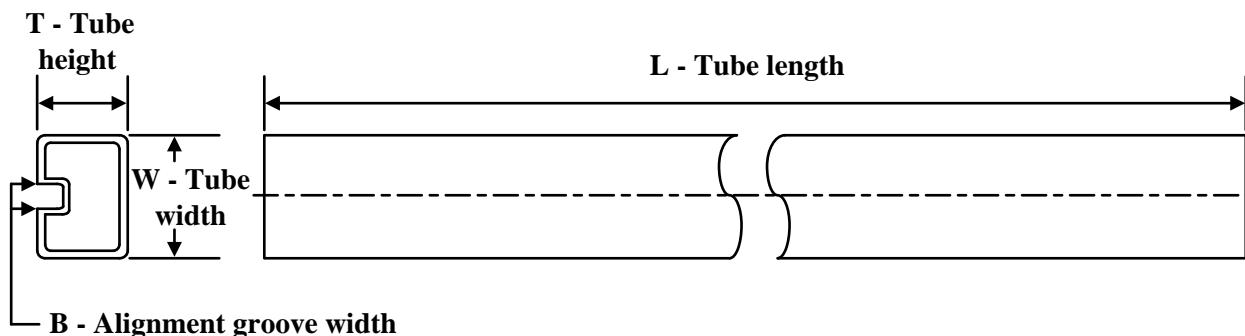
NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

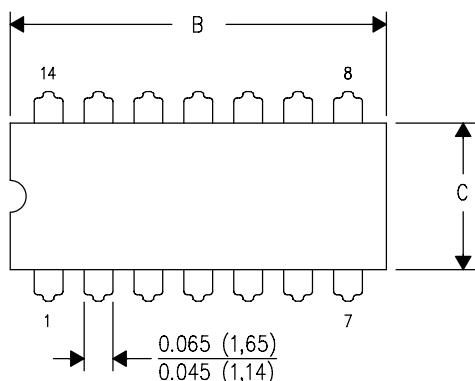
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC273M96	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
CD74HC273M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74HCT273M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74HCT273M96	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

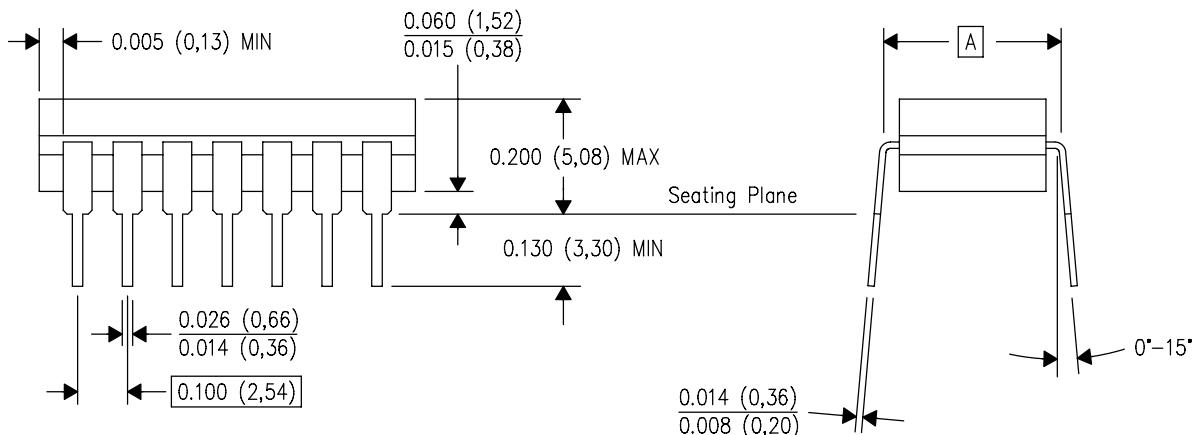
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC273M96	SOIC	DW	20	2000	356.0	356.0	45.0
CD74HC273M96	SOIC	DW	20	2000	356.0	356.0	45.0
CD74HCT273M96	SOIC	DW	20	2000	356.0	356.0	45.0
CD74HCT273M96	SOIC	DW	20	2000	356.0	356.0	45.0

TUBE


*All dimensions are nominal

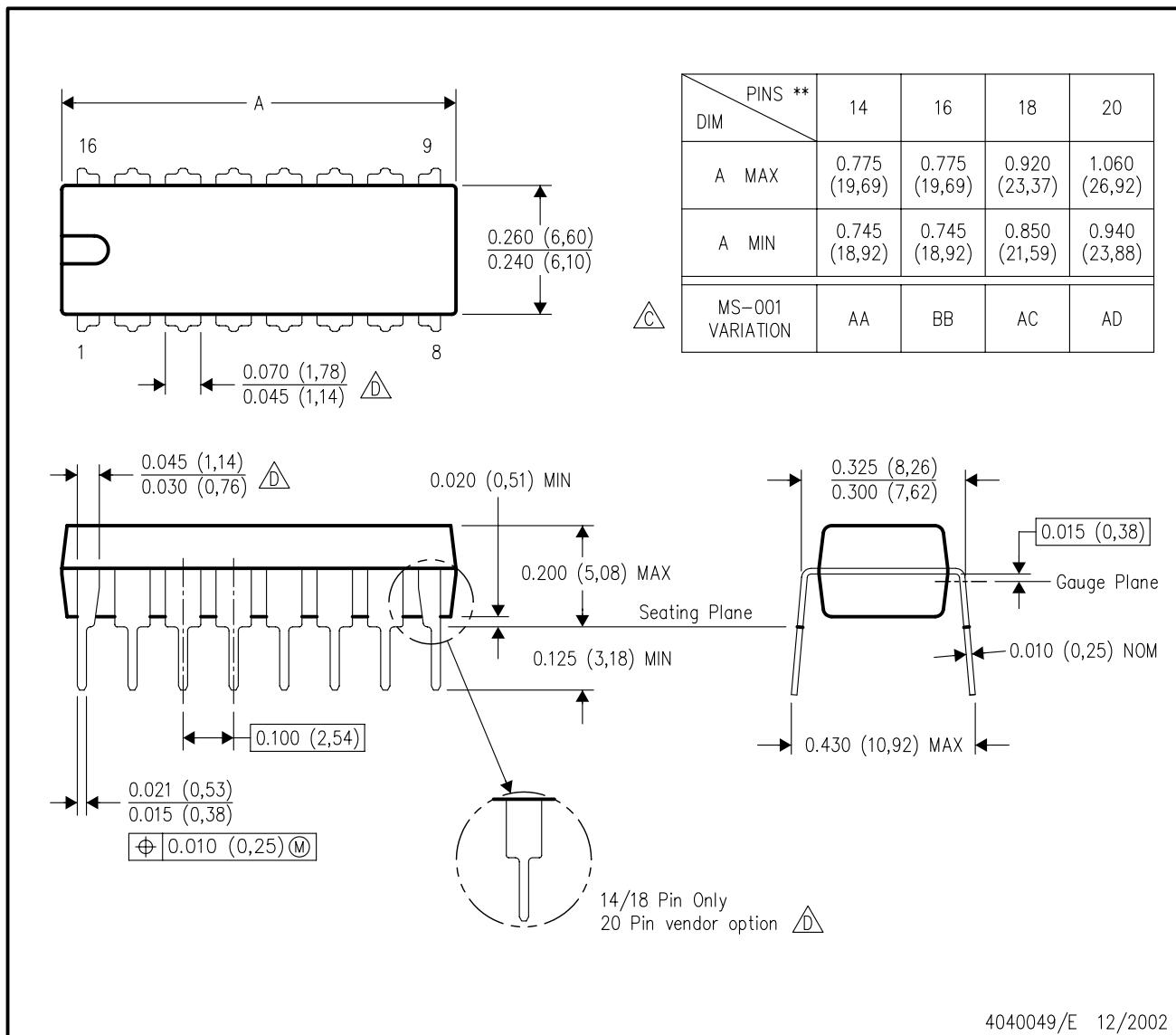
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
CD74HC273E	N	PDIP	20	20	506	13.97	11230	4.32
CD74HC273E.A	N	PDIP	20	20	506	13.97	11230	4.32
CD74HCT273E	N	PDIP	20	20	506	13.97	11230	4.32
CD74HCT273E.A	N	PDIP	20	20	506	13.97	11230	4.32
CD74HCT273EE4	N	PDIP	20	20	506	13.97	11230	4.32


J (R-GDIP-T**)

14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

PINS ** DIM	14	16	18	20
A	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC
B MAX	0.785 (19,94)	.840 (21,34)	0.960 (24,38)	1.060 (26,92)
B MIN	—	—	—	—
C MAX	0.300 (7,62)	0.300 (7,62)	0.310 (7,87)	0.300 (7,62)
C MIN	0.245 (6,22)	0.245 (6,22)	0.220 (5,59)	0.245 (6,22)


4040083/F 03/03

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

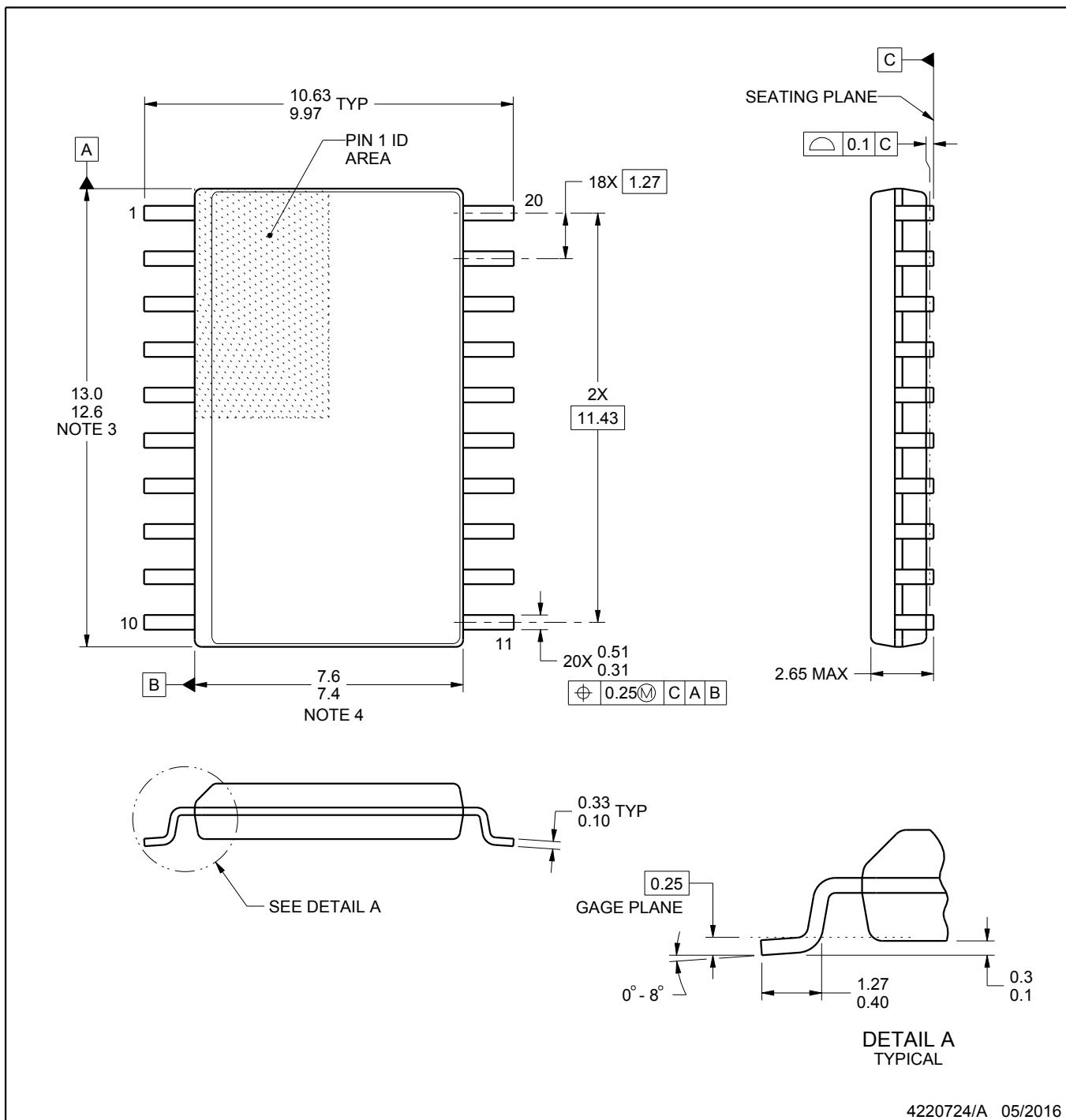
16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

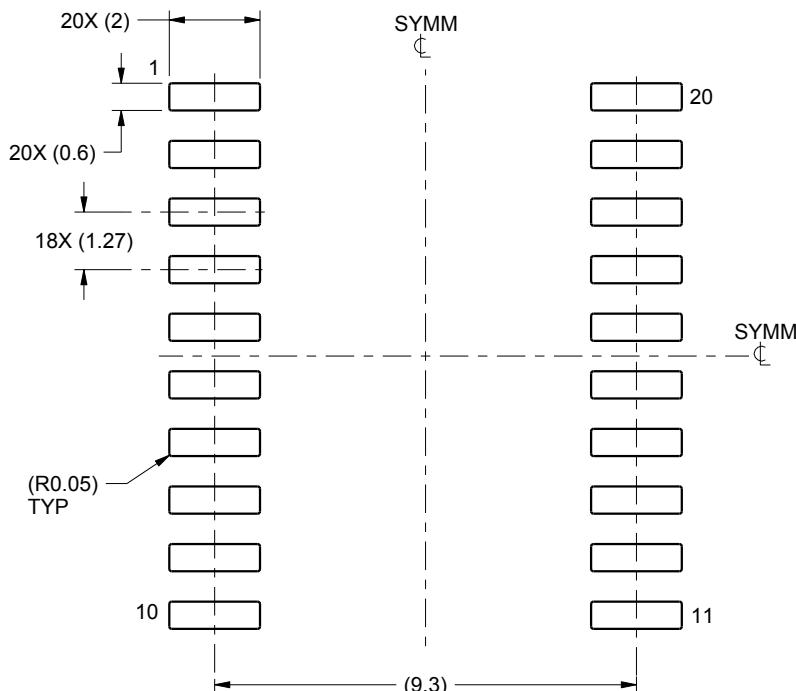

PACKAGE OUTLINE

DW0020A

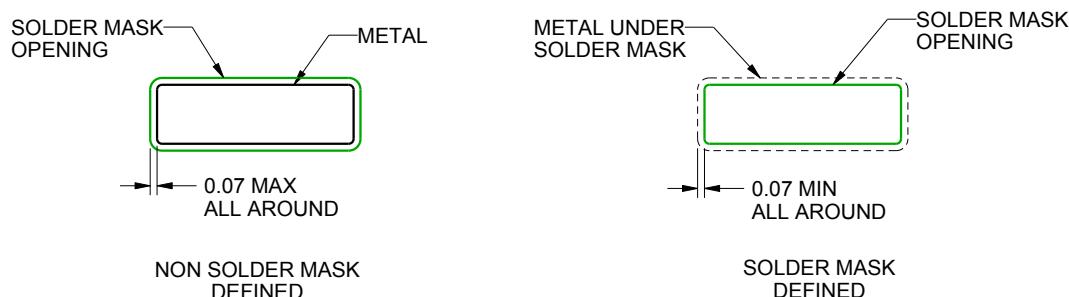
SOIC - 2.65 mm max height

SOIC

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0020A

SOIC - 2.65 mm max height

SOIC

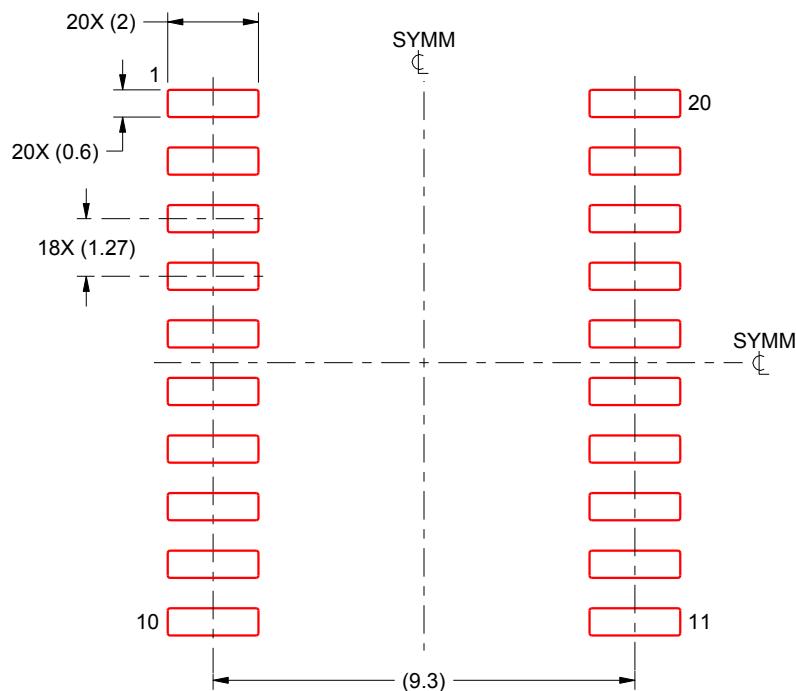
LAND PATTERN EXAMPLE
SCALE:6X

SOLDER MASK DETAILS

4220724/A 05/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0020A

SOIC - 2.65 mm max height

SOIC

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4220724/A 05/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025