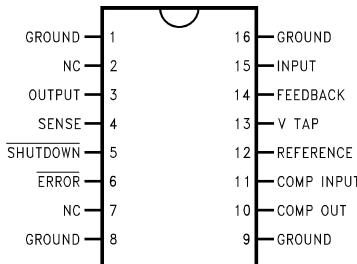


LP2953QML Adjustable Micropower Low-Dropout Voltage Regulators

Check for Samples: [LP2953QML](#), [LP2953QML-SP](#)


FEATURES

- Output Voltage Adjusts from 1.23V to 29V
- Ensured 250 mA Output Current
- Extremely Low Quiescent Current
- Low Dropout Voltage
- Extremely Tight Line and Load Regulation
- Very Low Temperature Coefficient
- Current and Thermal Limiting
- Reverse Battery Protection
- 50 mA (Typical) Output Pulldown Crowbar
- Auxiliary Comparator Included with CMOS/TTL Compatible Output Levels. Can be used for Fault Detection, Low Input Line Detection, etc.

APPLICATIONS

- High-Efficiency Linear Regulator
- Regulator with Under-Voltage Shutdown
- Low Dropout Battery-Powered Regulator
- Snap-ON/Snap-OFF Regulator

Connection Diagram

Note: Pins 1, 8, 9, 16 must be shorted together on customer PC board application

Figure 1. 16-Pin CFP Package

DESCRIPTION

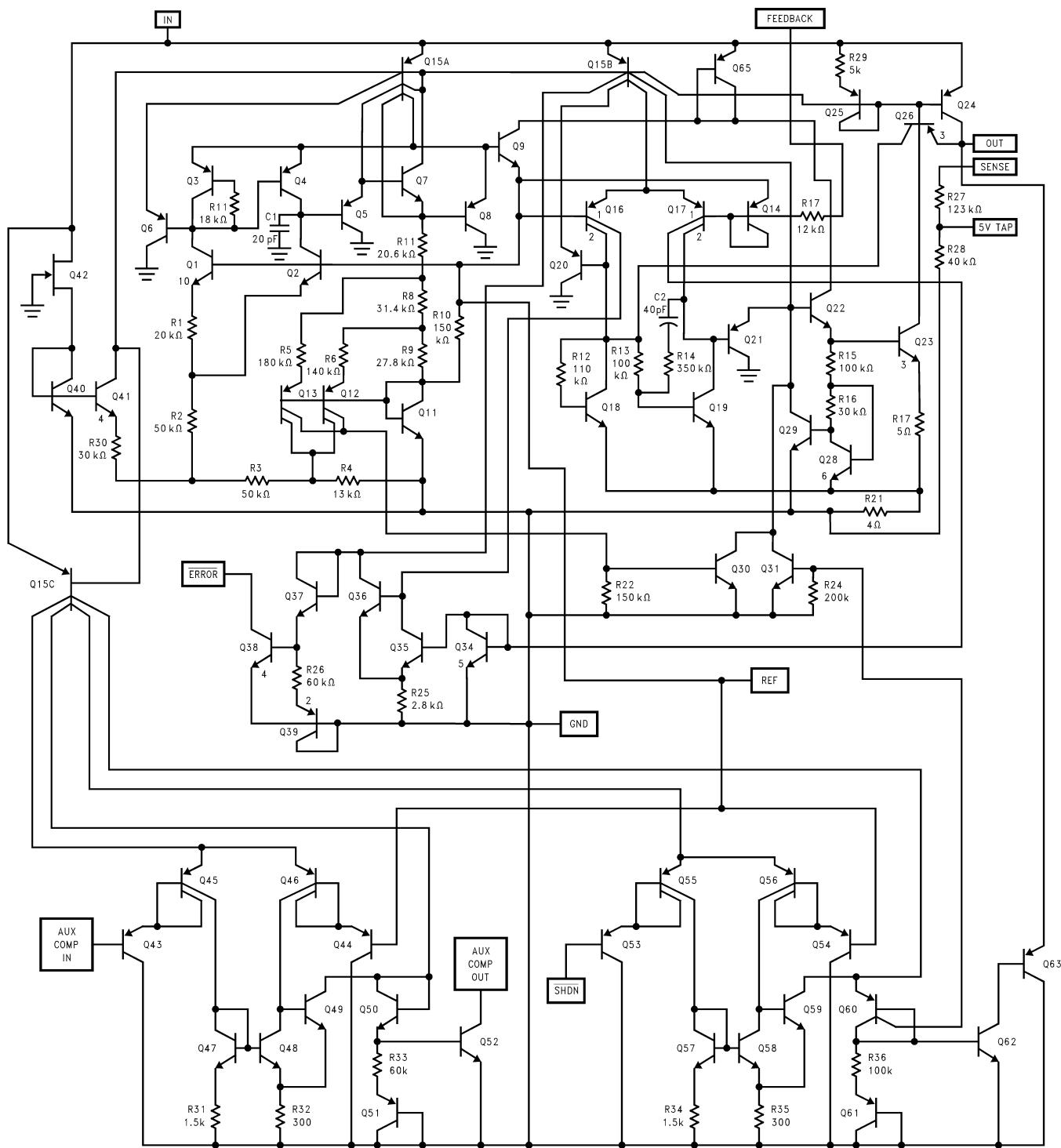
The LP2953A is a micropower voltage regulator with very low quiescent current (130 μ A typical at 1 mA load) and very low dropout voltage (typ. 60 mV at light load and 470 mV at 250 mA load current). It is ideally suited for battery-powered systems. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.

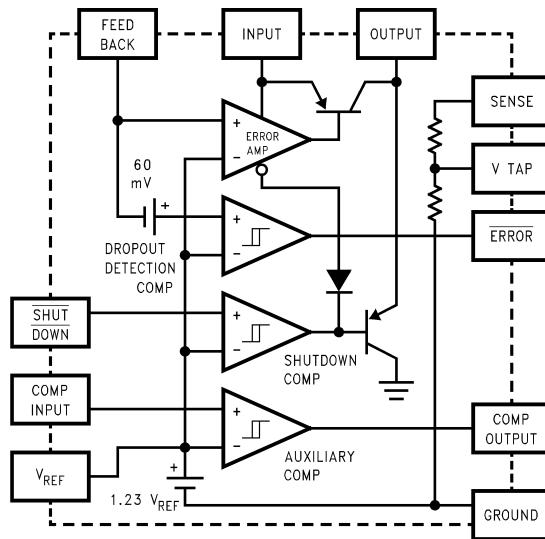
The LP2953A retains all the desirable characteristics of the LP2951, but offers increased output current, additional features, and an improved shutdown function.

The internal crowbar pulls the output down quickly when the shutdown is activated.

The error flag goes low if the output voltage drops out of regulation.

Reverse battery protection is provided.


The internal voltage reference is made available for external use, providing a low-T.C. reference with very good line and load regulation.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Schematic Diagram

Block Diagram

Figure 2. LP2953

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾

Storage Temperature Range		-65°C ≤ T _A ≤ +150°C	
Operating Temperature Range		-55°C ≤ T _A ≤ +125°C	
Maximum Junction Temperature		+150°C	
Lead Temp. (Soldering, 5 seconds)		260°C	
Power Dissipation ⁽²⁾		Internally Limited	
Input Supply Voltage		-20V to +30V	
Feedback Input Voltage ⁽³⁾		-0.3V to +5V	
Comparator Input Voltage ⁽⁴⁾		-0.3V to +30V	
Shutdown Input Voltage ⁽⁴⁾		-0.3V to +30V	
Comparator Output Voltage ⁽⁴⁾		-0.3V to +30V	
Thermal Resistance	θ _{JA}	16LD CFP "WG" (device 01) (Still Air)	134°C/W
		16LD CFP "WG" (device 01) (500LF/Min Air flow)	81°C/W
		16LD CFP "GW" (device 02) (Still Air)	140°C/W
		16LD CFP "GW" (device 02) (500LF/Min Air flow)	90°C/W
	θ _{JC}	16LD CFP "WG" (device 01) ⁽⁵⁾	7°C/W
		16LD CFP "GW" (device 02)	15°C/W
Package Weight (Typical)	16LD CFP "WG" (device 01)	360mg	
	16LD CFP "GW" (device 02)	410mg	
ESD Rating ⁽⁶⁾		2 KV	

- (1) Abs. Max Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see Electrical Characteristics. The specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is P_{Dmax} = (T_{Jmax} - T_A)/θ_{JA} or the number given in the Absolute Maximum Ratings, whichever is lower.
- (3) When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.
- (4) May exceed the input supply voltage.
- (5) The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using θ_{JA}, rather than θ_{JC}, thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out the package, since the thermal resistance of the leadframe material is very poor, relative to the material of the package base. The stated θ_{JC} thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package base and the printed circuit board. The user must determine the value of the additional thermal resistance and must combine this with the stated value for the package, to calculate the total allowed power dissipation for the device.
- (6) Human body model, 1.5 KΩ in series with 100 pF.

Quality Conformance Inspection

Table 1. Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

LP2953A Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$
Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

Parameter		Test Conditions	Notes	Min	Max	Units	Sub-groups
V_O	Output Voltage			4.975	5.025	V	1
				4.94	5.06	V	2, 3
		$1mA \leq I_L \leq 250mA$		4.93	5.07	V	1, 2, 3
$\Delta V_O / V_O$	Output Voltage Line Regulation	$V_I = 6V$ to $30V$		0.1	%		1
				0.2	%		2, 3
$\Delta V_O / V_O$	Output Voltage Load Regulation	$I_L = 1mA$ to $250mA$		0.16	%		1
				0.2	%		2, 3
		$I_L = 0.1mA$ to $1mA$		0.16	%		1
				0.2	%		2, 3
$V_I - V_O$	Dropout Voltage	$I_L = 1mA$	See ⁽¹⁾	100	mV		1
				150	mV		2, 3
		$I_L = 50mA$	See ⁽¹⁾	300	mV		1
				420	mV		2, 3
		$I_L = 100mA$	See ⁽¹⁾	400	mV		1
				520	mV		2, 3
		$I_L = 250mA$	See ⁽¹⁾	600	mV		1
				800	mV		2, 3

(1) Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1V differential. At very low values of programmed output voltage, the input voltage minimum of 2V (2.3V over temperature) must be observed.

LP2953A Electrical Characteristics DC Parameters (continued)

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$
Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

Parameter		Test Conditions	Notes	Min	Max	Units	Sub-groups
I_{Gnd}	Ground Pin Current	$I_L = 1mA$	See ⁽²⁾	170	μA	1	
				200	μA	2, 3	
		$I_L = 50mA$	See ⁽²⁾	2.0	mA	1	
				2.5	mA	2, 3	
		$I_L = 100mA$	See ⁽²⁾	6.0	mA	1	
				8.0	mA	2, 3	
		$I_L = 250mA$	See ⁽²⁾	28	mA	1	
				33	mA	2, 3	
I_{Gnd}	Ground Pin Current at Dropout	$V_I = 4.5V$, $I_L = 100\mu A$	See ⁽²⁾	210	μA	1	
I_{Gnd}	Ground Pin Current at Shutdown			240	μA	2, 3	
I_{Limit}	Current Limit	$V_O = 0V$	See ⁽²⁾⁽³⁾	140	μA	1	
$\Delta V_O / \Delta P_D$	Thermal Regulation			500	mA	1	
V_{Ref}	Reference Voltage		See ⁽⁵⁾	530	mA	2, 3	
				1.215	1.245	V	1
$\Delta V_{Ref} / V_{Ref}$	Reference Voltage Line Regulation	$V_I = 2.5V$ to $6V$		1.205	1.255	V	2, 3
				0.1	%	1	
		$V_I = 6V$ to $30V$		0.2	%	2, 3	
				0.1	%	1	
$\Delta V_{Ref} / V_{Ref}$	Reference Voltage Load Regulation	$I_{Ref} = 0$ to $200\mu A$		0.2	%	2, 3	
				0.4	%	1	
I_{FB}	Feedback Pin Bias Current			0.6	%	2, 3	
				40	nA	1	
$I_{O\ Sink}$	Output "Off" Pulldown Current		See ⁽⁶⁾	60	nA	2, 3	
				30	mA	1	
				20	mA	2, 3	

(2) Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, output load current, and current through the external resistive divider (if used).

(3) $V_{Shutdown} \leq 1.1V$, $V_O = V_O(\text{Nom})$.

(4) Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at $V_I = V_O(\text{Nom}) + 15V$ (3W pulse) for $T = 10$ mS.

(5) $V_{Ref} \leq V_O \leq (V_I - 1V)$, $2.3V \leq V_I \leq 30V$, $100\mu A \leq I_L \leq 250mA$.

(6) $V_{Shutdown} \leq 1.1V$, $V_O = V_O(\text{Nom})$.

LP2953A Electrical Characteristics Dropout Detection Comparator Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$
Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

Parameter		Test Conditions	Notes	Min	Max	Units	Sub-groups
I_{OH}	Output "High" Leakage	$V_{OH} = 30V$		1.0	μA	1	
				2.0	μA	2, 3	
V_{OL}	Output "Low" Voltage	$V_I = 4V$, I_O Comp = 400 μA		250	mV	1	
				400	mV	2, 3	
$V_{Th\ Max}$	Upper Threshold Voltage		See ⁽¹⁾	-320	-150	mV	1
				-380	-130	mV	2
				-380	-120	mV	3
$V_{Th\ Min}$	Lower Threshold Voltage		See ⁽¹⁾	-450	-280	mV	1
				-640	-180	mV	2
				-640	-155	mV	3

(1) Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal V_{Ref} measured at $V_I = V_O(\text{Nom}) + 1V$. To express these thresholds in terms of output voltage change, multiply by the Error amplifier gain, which is $V_O/V_{Ref} = (R1 + R2)/R2$ (refer to [Figure 31](#)).

LP2953A Electrical Characteristics SHUTDOWN Input Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$
Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

Parameter		Test Conditions	Notes	Min	Max	Units	Sub-groups
V_{IO}	Input Offset Voltage	Referred to V_{Ref}		-7.5	7.5	mV	1
				-10	10	mV	2
				-12	12	mV	3
I_{IB}	Input Bias Current	V_I Comp = 0 to 5V		-30	30	nA	1
				-50	50	nA	2
				-75	75	nA	3

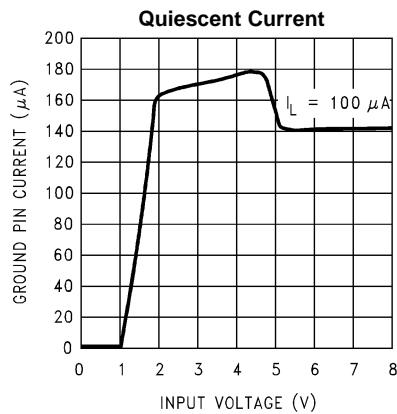
LP2953A Electrical Characteristics Auxillary Comparator Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$
Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

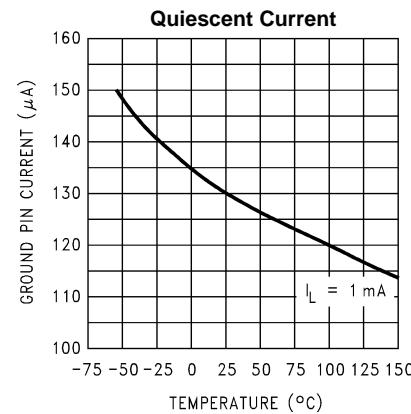
Parameter		Test Conditions	Notes	Min	Max	Units	Sub-groups
V_{IO}	Input Offset Voltage	Referred to V_{Ref}		-7.5	7.5	mV	1
				-10	10	mV	2
				-12	12	mV	3
I_{IB}	Input Bias Current	V_I Comp = 0 to 5V		-30	30	nA	1
				-50	50	nA	2
				-75	75	nA	3
I_{OH}	Output "High" Leakage	$V_{OH} = 30V$, V_I Comp = 1.3V		1.0	μA	1	
				2.0	μA	2	
				2.2	μA	3	
V_{OL}	Output "Low" Voltage	V_I Comp = 1.1V, I_O Comp = 400 μA		250	mV	1	
				400	mV	2	
				420	mV	3	

LP2953A Electrical Characteristics DC Drift Parameters

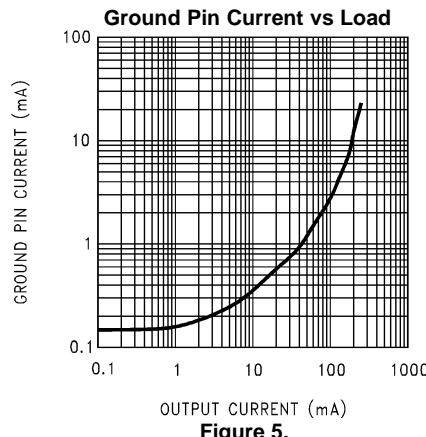
The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$

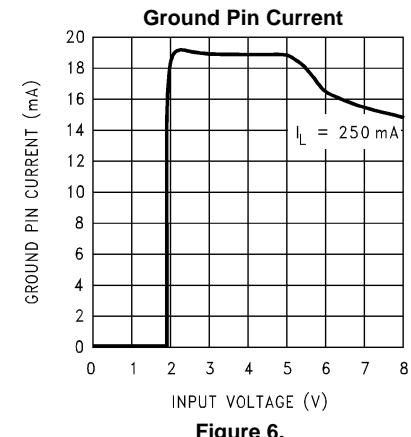

Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

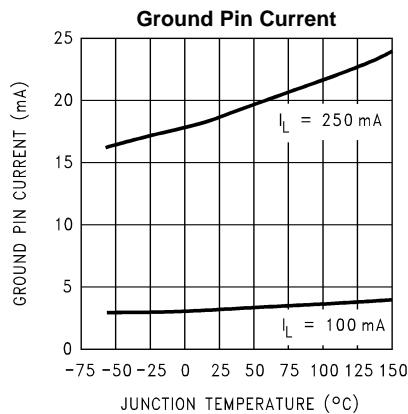
Δcalculations performed on QMLV devices at group B , subgroup 5.


Parameter		Test Conditions	Notes	Min	Max	Units	Sub-groups
V _I - V _O	Dropout Voltage	I _L = 1mA		-12	12	%	1
		I _L = 50mA		-12	12	%	1
		I _L = 100mA		-12	12	%	1
		I _L = 250mA		-12	12	%	1
I _{Gnd}	Ground Pin Current	I _L = 1mA, $\pm 5\mu A$ or $\pm 10\%$ whichever is greater		-5.0	5.0	μA	1
		I _L = 50mA, $\pm 5\mu A$ or $\pm 10\%$ whichever is greater		-5.0	5.0	μA	1
		I _L = 100mA, $\pm 5\mu A$ or $\pm 10\%$ whichever is greater		-5.0	5.0	μA	1
		I _L = 250mA, $\pm 5\mu A$ or $\pm 10\%$ whichever is greater		-5.0	5.0	μA	1
I _{Gnd}	Ground Pin Current at Dropout	V _I = 4.5V, I _L = 100 μA , $\pm 5\mu A$ or $\pm 10\%$ whichever is greater		-5.0	5.0	μA	1
I _{Gnd}	Ground Pin Current at Shutdown	$\pm 5\mu A$ or $\pm 10\%$ whichever is greater		-5.0	5.0	μA	1
V _{IO}	Input Offset Voltage	Referred to V _{Ref} SHUTDOWN Input		-1.0	1.0	mV	1
		Referred to V _{Ref} Auxillary Comparator		-1.0	1.0	mV	1
I _{IB}	Input Bias Current	V _I Comp = 0 to 5V SHUTDOWN Input		-5.0	5.0	nA	1
		V _I Comp = 0 to 5V Auxillary Comparator		-5.0	5.0	nA	1

Typical Performance Characteristics


Unless otherwise specified: $V_I = 6V$, $I_L = 1 \text{ mA}$, $C_L = 2.2 \mu\text{F}$, $V_{SD} = 3V$, $T_A = 25^\circ\text{C}$, $V_O = 5V$.


Figure 3.


Figure 4.

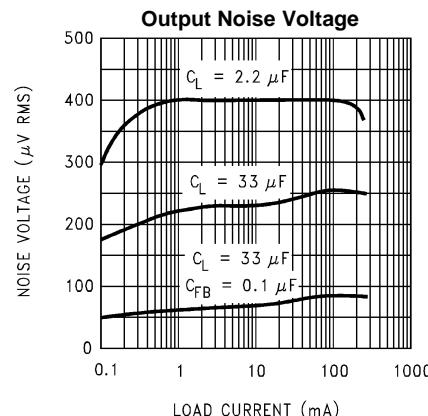

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Typical Performance Characteristics (continued)

Unless otherwise specified: $V_I = 6V$, $I_L = 1 \text{ mA}$, $C_L = 2.2 \mu\text{F}$, $V_{SD} = 3V$, $T_A = 25^\circ\text{C}$, $V_O = 5V$.

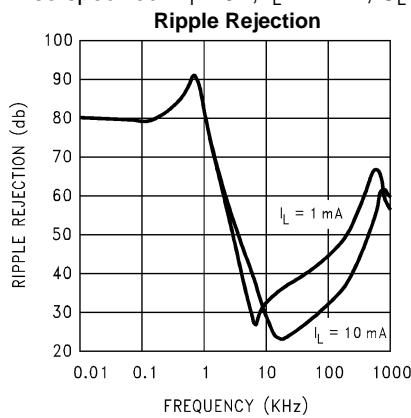


Figure 9.

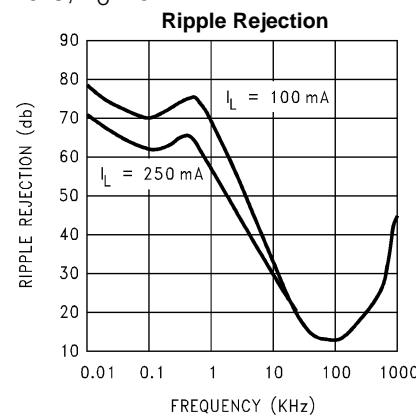


Figure 10.

Figure 11.

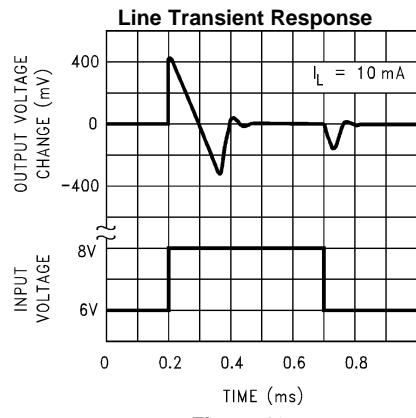


Figure 12.

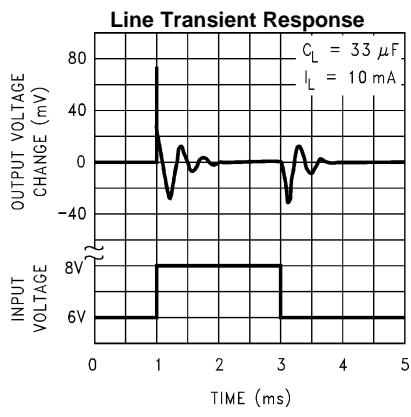


Figure 13.

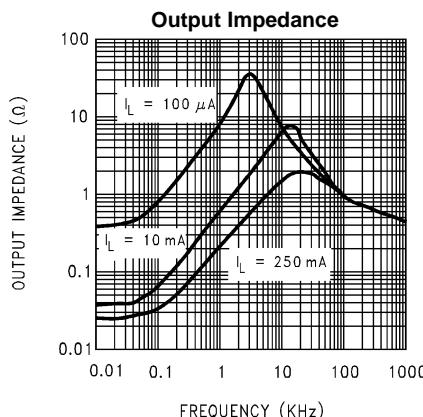


Figure 14.

Typical Performance Characteristics (continued)

Unless otherwise specified: $V_I = 6V$, $I_L = 1\text{ mA}$, $C_L = 2.2\text{ }\mu\text{F}$, $V_{SD} = 3V$, $T_A = 25^\circ\text{C}$, $V_O = 5V$.

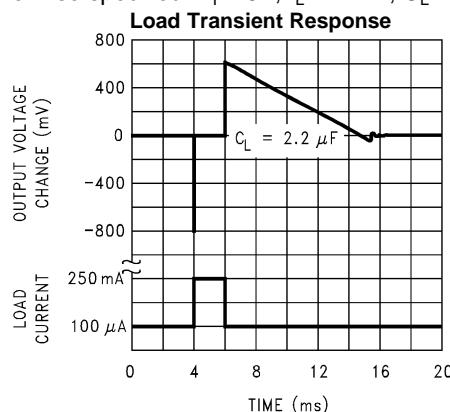


Figure 15.

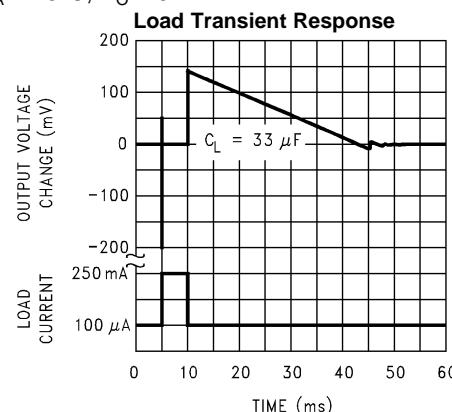


Figure 16.

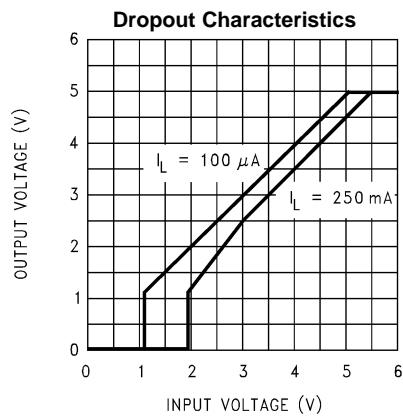


Figure 17.

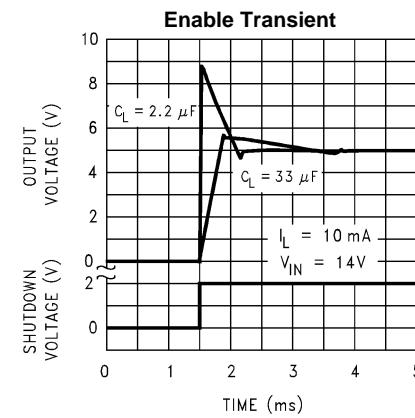


Figure 18.

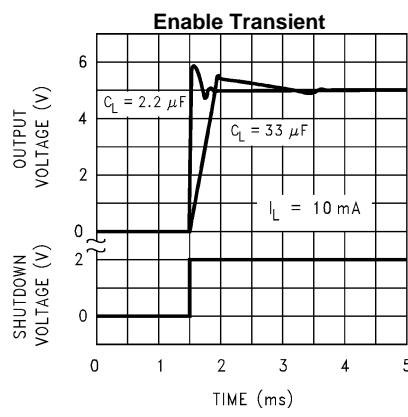


Figure 19.

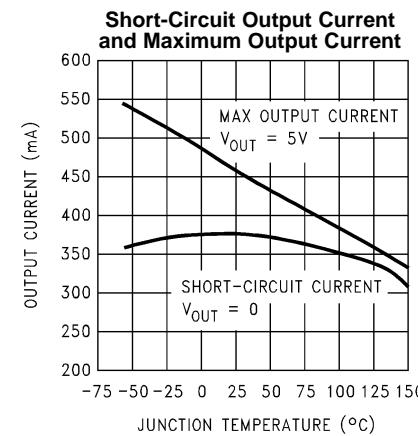


Figure 20.

Typical Performance Characteristics (continued)

Unless otherwise specified: $V_I = 6V$, $I_L = 1\text{ mA}$, $C_L = 2.2\text{ }\mu\text{F}$, $V_{SD} = 3V$, $T_A = 25^\circ\text{C}$, $V_O = 5V$.

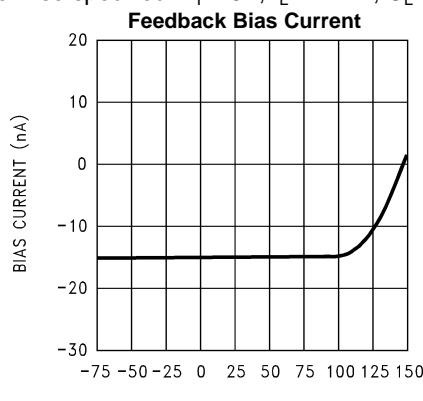


Figure 21.

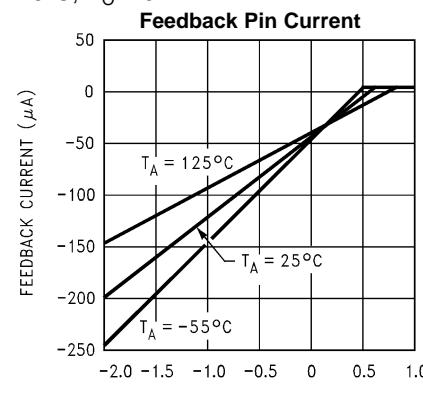


Figure 22.

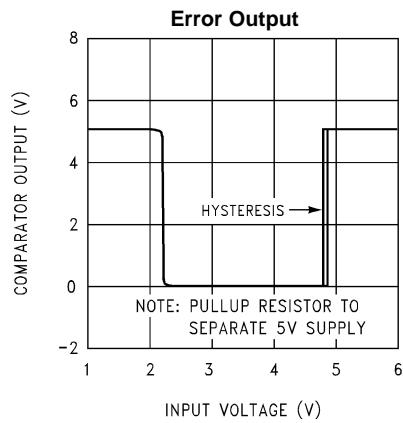


Figure 23.

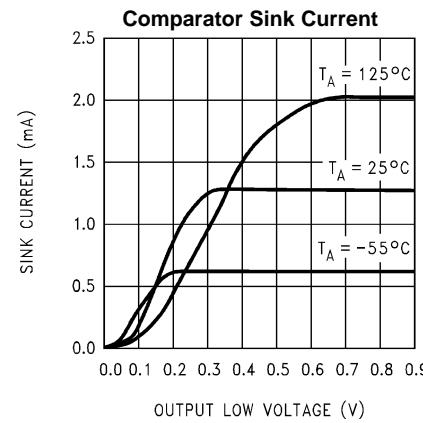


Figure 24.

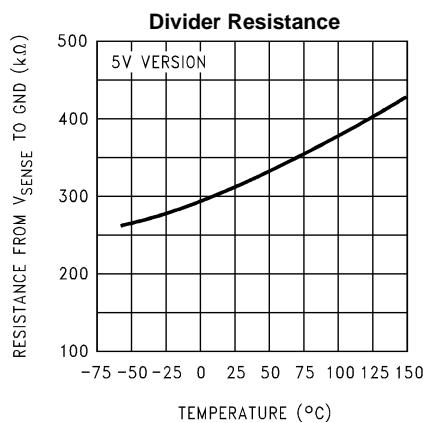
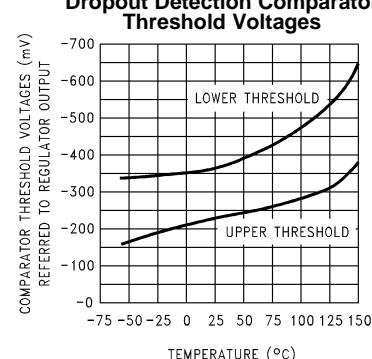
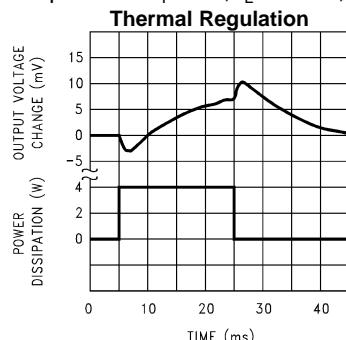
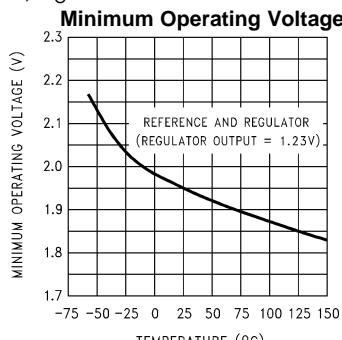


Figure 25.


Figure 26.

Typical Performance Characteristics (continued)

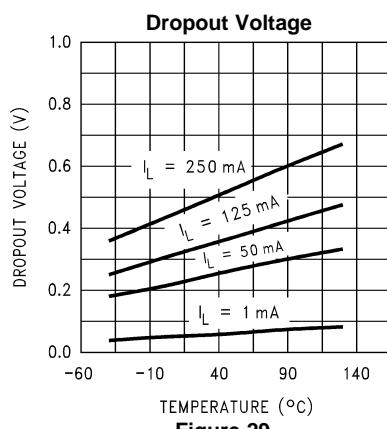

Unless otherwise specified: $V_I = 6V$, $I_L = 1\text{ mA}$, $C_L = 2.2\text{ }\mu\text{F}$, $V_{SD} = 3V$, $T_A = 25^\circ\text{C}$, $V_O = 5V$.

Figure 27.

Figure 28.

Figure 29.

APPLICATION HINTS

Ground Pins

For the LP2953 16-Pin Ceramic SOIC, Pins 1, 8, 9, 16 MUST BE SHORTED TOGETHER ON CUSTOMER'S P.C. BOARD APPLICATION.

Heatsink Requirements

The maximum allowable power dissipation for the LP2953 is limited by the maximum junction temperature (+150°C) and the two parameters that determine how quickly heat flows away from the die: *the ambient temperature and the junction-to-ambient thermal resistance of the part*.

The military parts which are manufactured in ceramic DIP packages contain a KOVAR lead frame (unlike the industrial parts, which have a copper lead frame). The KOVAR material is necessary to attain the hermetic seal required in military applications.

The KOVAR lead frame does not conduct heat as well as copper, which means that the PC board copper can not be used to significantly reduce the overall junction-to-ambient thermal resistance.

The power dissipation calculations are done using a fixed value for $\theta_{(J-A)}$, the junction-to-ambient thermal resistance, of 134°C/W and can not be changed by adding copper foil patterns to the PC board. This leads to an important fact: *The maximum allowable power dissipation in any application using the LP2953 is dependent only on the ambient temperature*:

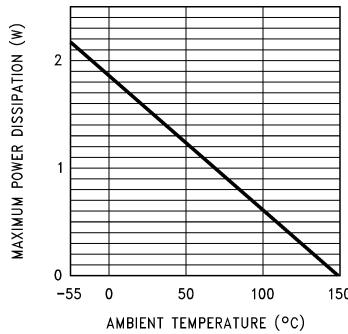
$$\begin{aligned}
 P_{(\max)} &= T_{R(\max)} / \theta_{(J-A)} \\
 P_{(\max)} &= \frac{T_{J(\max)} - T_{A(\max)}}{\theta_{(J-A)}} \\
 P_{(\max)} &= \frac{150 - T_{A(\max)}}{95}
 \end{aligned} \tag{1}$$

External Capacitors

A 2.2 μ F (or greater) capacitor is required between the output pin and ground to assure stability when the output is set to 5V. Without this capacitor, the part will oscillate. Most type of tantalum or aluminum electrolytics will work here. Film types will work, but are more expensive. Many aluminum electrolytics contain electrolytes which freeze at -30°C, which requires the use of solid tantalums below -25°C. The important parameters of the capacitor are an ESR of about 5 Ω or less and a resonant frequency above 500 kHz (the ESR may increase by a factor of **20** or **30** as the temperature is reduced from 25°C to -30°C). The value of this capacitor may be increased without limit.

At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to 0.68 μ F for currents below 10 mA or 0.22 μ F for currents below 1 mA.

Programming the output for voltages below 5V runs the error amplifier at lower gains requiring *more* output capacitance for stability. At 3.3V output, a minimum of 4.7 μ F is required. For the worst-case condition of 1.23V output and 250 mA of load current, a 6.8 μ F (or larger) capacitor should be used.


A 1 μ F capacitor should be placed from the input pin to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery input is used.

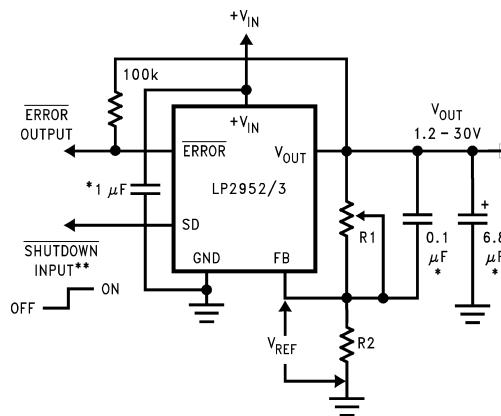
Stray capacitance to the Feedback terminal can cause instability. This problem is most likely to appear when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between the Output and Feedback pins and increasing the output capacitance to 6.8 μ F (or greater) will cure the problem.

Minimum Load

When setting the output voltage using an external resistive divider, a minimum current of 1 μ A is recommended through the resistors to provide a minimum load.

It should be noted that a minimum load current is specified in several of the electrical characteristic test conditions, so this value must be used to obtain correlation on these tested limits.

Figure 30. Power Derating Curve for LP2953


Programming the Output Voltage

The regulator may be pin-strapped for 5V operation using its internal resistive divider by tying the Output and Sense pins together and also tying the Feedback and 5V Tap pins together.

Alternatively, it may be programmed for any voltage between the 1.23V reference and the 30V maximum rating using an external pair of resistors (see [Figure 31](#)). The complete equation for the output voltage is:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2} \right) + (I_{FB} \times R1) \quad (2)$$

where V_{REF} is the 1.23V reference and I_{FB} is the Feedback pin bias current (-20 nA typical). The minimum recommended load current of 1 μ A sets an upper limit of 1.2 M Ω on the value of $R2$ in cases where the regulator must work with no load (see [Minimum Load](#)). I_{FB} will produce a typical 2% error in V_O which can be eliminated at room temperature by trimming $R1$. For better accuracy, choosing $R2 = 100$ k Ω will reduce this error to 0.17% while increasing the resistor program current to 12 μ A. Since the typical quiescent current is 120 μ A, this added current is negligible.

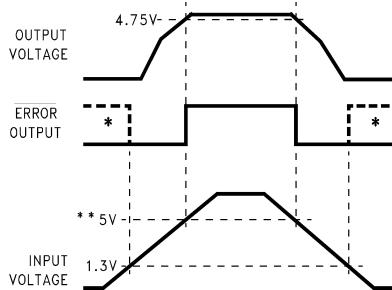
* See [Application Hints](#)

** Drive with TTL-low to shut down

Figure 31. Adjustable Regulator

Dropout Voltage

The dropout voltage of the regulator is defined as the minimum input-to-output voltage differential required for the output voltage to stay within 100 mV of the output voltage measured with a 1V differential. The dropout voltage is independent of the programmed output voltage.


Dropout Detection Comparator

This comparator produces a logic "LOW" whenever the output falls out of regulation by more than about 5%. This figure results from the comparator's built-in offset of 60 mV divided by the 1.23V reference (refer to [Block Diagram](#)). The 5% low trip level remains constant regardless of the programmed output voltage. An out-of-regulation condition can result from low input voltage, current limiting, or thermal limiting.

[Figure 32](#) gives a timing diagram showing the relationship between the output voltage, the ERROR output, and input voltage as the input voltage is ramped up and down to a regulator programmed for 5V output. The ERROR signal becomes low at about 1.3V input. It goes high at about 5V input, where the output equals 4.75V. Since the dropout voltage is load dependent, the **input** voltage trip points will vary with load current. The **output** voltage trip point does not vary.

The comparator has an open-collector output which requires an external pull-up resistor. This resistor may be connected to the regulator output or some other supply voltage. Using the regulator output prevents an invalid "HIGH" on the comparator output which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below 1.3V. In selecting a value for the pull-up resistor, note that while the output can sink 400 μ A, this current adds to battery drain. Suggested values range from 100 k Ω to 1 M Ω . This resistor is not required if the output is unused.

When $V_{IN} \leq 1.3V$, the error flag pin becomes a high impedance, allowing the error flag voltage to rise to its pull-up voltage. Using V_{OUT} as the pull-up voltage (rather than an external 5V source) will keep the error flag voltage below 1.2V (typical) in this condition. The user may wish to divide down the error flag voltage using equal-value resistors (10 k Ω suggested) to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

* In shutdown mode, ERROR will go high if it has been pulled up to an external supply. To avoid this invalid response, pull up to regulator output.

** Exact value depends on dropout voltage. (See [Application Hints](#))

Figure 32. ERROR Output Timing

Output Isolation

The regulator output can be left connected to an active voltage source (such as a battery) with the regulator input power shut off, **as long as the regulator ground pin is connected to ground**. If the ground pin is left floating, **damage to the regulator can occur** if the output is pulled up by an external voltage source.

Reducing Output Noise

In reference applications it may be advantageous to reduce the AC noise present on the output. One method is to reduce regulator bandwidth by increasing output capacitance. This is relatively inefficient, since large increases in capacitance are required to get significant improvement.

Noise can be reduced more effectively by a bypass capacitor placed across R1 (refer to [Figure 31](#)). The formula for selecting the capacitor to be used is:

$$C_B = \frac{1}{2\pi R1 \times 20 \text{ Hz}} \quad (3)$$

This gives a value of about $0.1 \mu\text{F}$. When this is used, the output capacitor must be $6.8 \mu\text{F}$ (or greater) to maintain stability. The $0.1 \mu\text{F}$ capacitor reduces the high frequency gain of the circuit to unity, lowering the output noise from $260 \mu\text{V}$ to $80 \mu\text{V}$ using a 10 Hz to 100 kHz bandwidth. Also, noise is no longer proportional to the output voltage, so improvements are more pronounced at high output voltages.

Auxiliary Comparator

The LP2953 contains an auxiliary comparator whose inverting input is connected to the 1.23V reference. The auxiliary comparator has an open-collector output whose electrical characteristics are similar to the dropout detection comparator. The non-inverting input and output are brought out for external connections.

SHUTDOWN Input

A logic-level signal will shut off the regulator output when a "LOW" ($<1.2\text{V}$) is applied to the Shutdown input.

To prevent possible mis-operation, the Shutdown input must be actively terminated. If the input is driven from open-collector logic, a pull-up resistor ($20 \text{ k}\Omega$ to $100 \text{ k}\Omega$ recommended) should be connected from the Shutdown input to the regulator input.

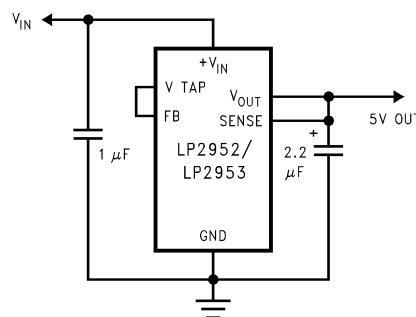
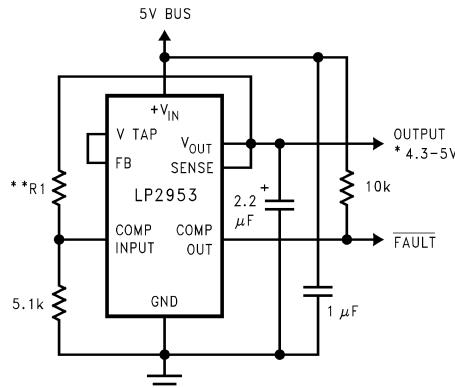
If the Shutdown input is driven from a source that actively pulls high and low (like an op-amp), the pull-up resistor is not required, but may be used.

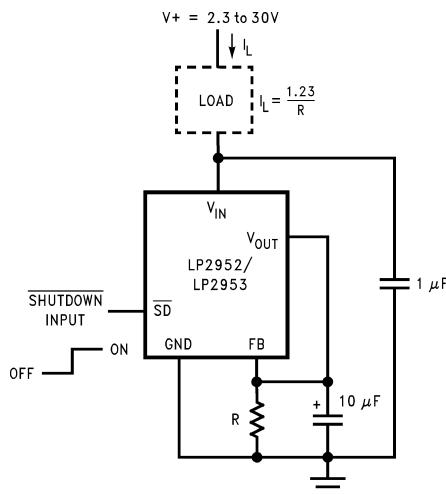
If the shutdown function is not to be used, the cost of the pull-up resistor can be saved by simply tying the Shutdown input directly to the regulator input.

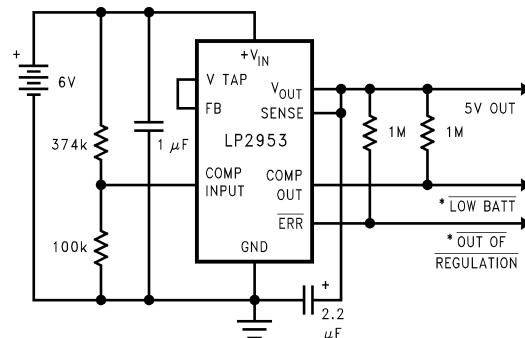
IMPORTANT: Since the [Absolute Maximum Ratings](#) state that the Shutdown input can not go more than 0.3V below ground, the reverse-battery protection feature which protects the regulator input is sacrificed if the Shutdown input is tied directly to the regulator input.

If reverse-battery protection is required in an application, *the pull-up resistor between the Shutdown input and the regulator input must be used.*

Typical Applications

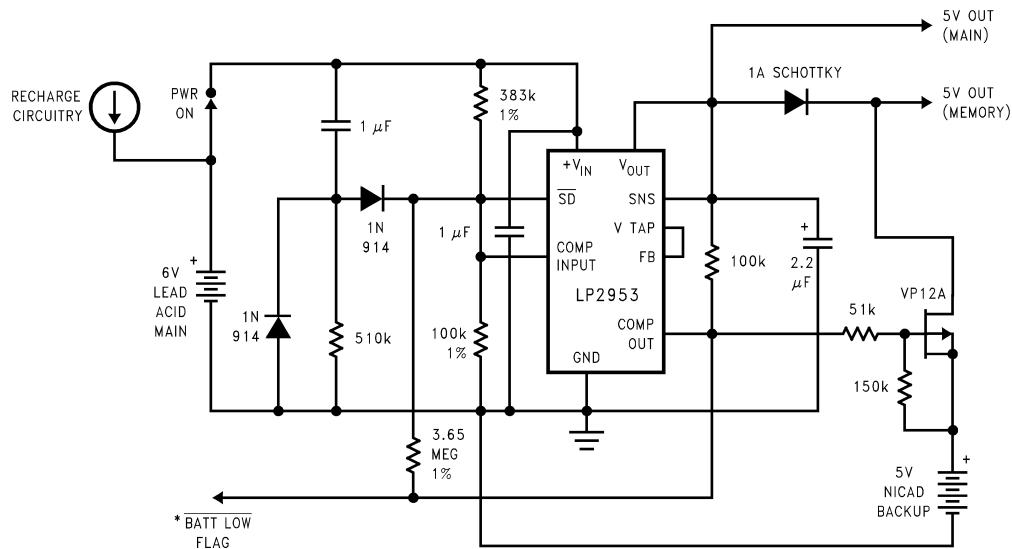




Figure 33. Basic 5V Regulator


* Output voltage equals $+V_{IN}$ minus dropout voltage, which varies with output current. Current limits at a maximum of 380 mA (typical).

** Select R1 so that the comparator input voltage is 1.23V at the output voltage which corresponds to the desired fault current value.

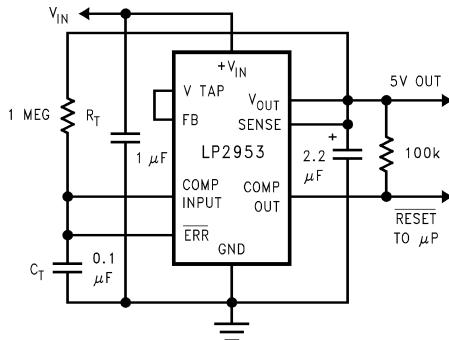
Figure 34. 5V Current Limiter with Load Fault Indicator


Figure 35. Low T.C. Current Sink

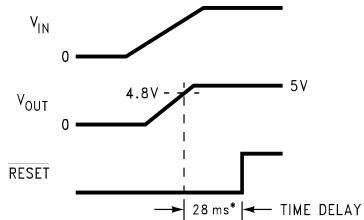
* Connect to Logic or μP control inputs.

LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or power down some hardware with high power requirements. The output is still in regulation at this time. OUT OF REGULATION flag indicates when the battery is almost completely discharged, and can be used to initiate a power-down sequence.

Figure 36. 5V Regulator with Error Flags for LOW BATTERY and OUT OF REGULATION



The circuit switches to the NI-CAD backup battery when the main battery voltage drops below about 5.6V, and returns to the main battery when its voltage is recharged to about 6V.


The 5V MAIN output powers circuitry which requires no backup, and the 5V MEMORY output powers critical circuitry which can not be allowed to lose power.

* The BATTERY LOW flag goes low whenever the circuit switches to the NI-CAD backup battery.

Figure 37. 5V Battery Powered Supply with Backup and Low Battery Flag

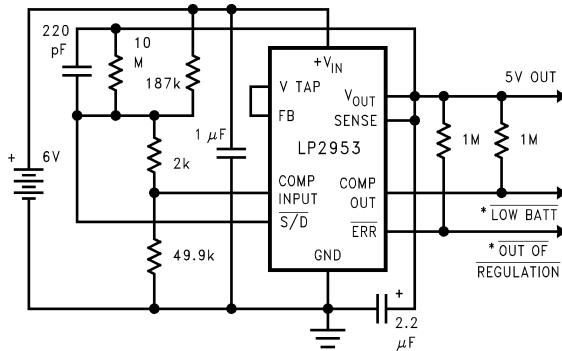
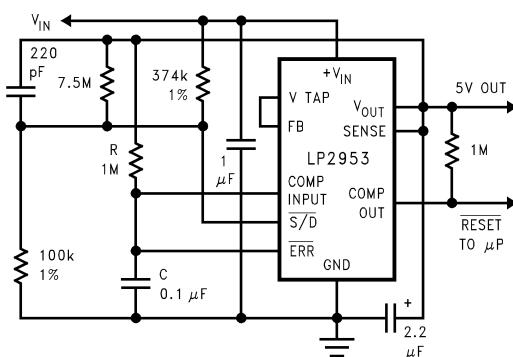


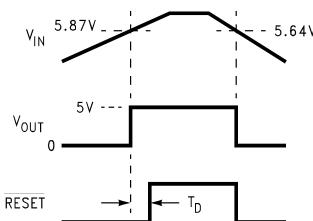
Figure 38. 5V Regulator with Timed Power-On Reset

* $R_T = 1 \text{ MEG}$, $C_T = 0.1 \mu\text{F}$

Figure 39. Timing Diagram for Timed Power-On Reset


* Connect to Logic or μ P control inputs.

OUTPUT has SNAP-ON/SNAP-OFF feature.


LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or shut down hardware with high power requirements. The output is still in regulation at this time.

OUT OF REGULATION flag goes low if the output goes below about 4.7V, which could occur from a load fault. OUTPUT has SNAP-ON/SNAP-OFF feature. Regulator snaps ON at about 5.7V input, and OFF at about 5.6V.

**Figure 40. 5V Regulator with Error Flags for
LOW BATTERY and OUT OF REGULATION
with SNAP-ON/SNAP-OFF Output**

Figure 41. 5V Regulator with Timed Power-On Reset, Snap-On/Snap-Off Feature and Hysteresis

$T_D = (0.28) RC = 28$ ms for components shown.

Figure 42. Timing Diagram

REVISION HISTORY SECTION

Released	Revision	Section	Changes
11/30/2010	A	New Release, Corporate format	1 MDS data sheet converted into one Corp. data sheet format. MNLP2953AM-X Rev 1A1 will be archived.
09/01/2011	B	Ordering Information, Absolute Maximum Ratings	Ordering Information — entered new 'GW' devices. Absolute Maximum Ratings — added new Theta JA and Theta JC numbers. LP2953QML Rev A will be archived.
09/20/2012	C	Connection Diagrams, Application Notes	Connection Diagrams and Applications Notes : Added: * Pins 1, 8, 9, 16 MUST BE SHORTED TOGETHER ON CUSTOMER'S P.C. BOARD APPLICATION. Rev B will be archived.

REVISION HISTORY

Changes from Revision B (April 2013) to Revision C	Page
• Changed layout of National Data Sheet to TI format	17

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-9233602QXA	Active	Production	CFP (NAC) 16	88 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LP2953AMGW /883 Q 5962-92336 02QXA ACO 02QXA >T
5962-9233602VXA	Active	Production	CFP (NAC) 16	88 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LP2953AMGW- QMLV Q 5962-92336 02VXA ACO 02VXA >T
LP2953 MDS	Active	Production	DIESALE (Y) 0	34 NOT REQUIRED	Yes	Call TI	Level-1-NA-UNLIM	-55 to 125	
LP2953AMGW-QMLV	Active	Production	CFP (NAC) 16	88 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LP2953AMGW- QMLV Q 5962-92336 02VXA ACO 02VXA >T
LP2953AMGW/883	Active	Production	CFP (NAC) 16	88 TUBE	No	SNPB	Level-1-NA-UNLIM	-55 to 125	LP2953AMGW /883 Q 5962-92336 02QXA ACO 02QXA >T

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

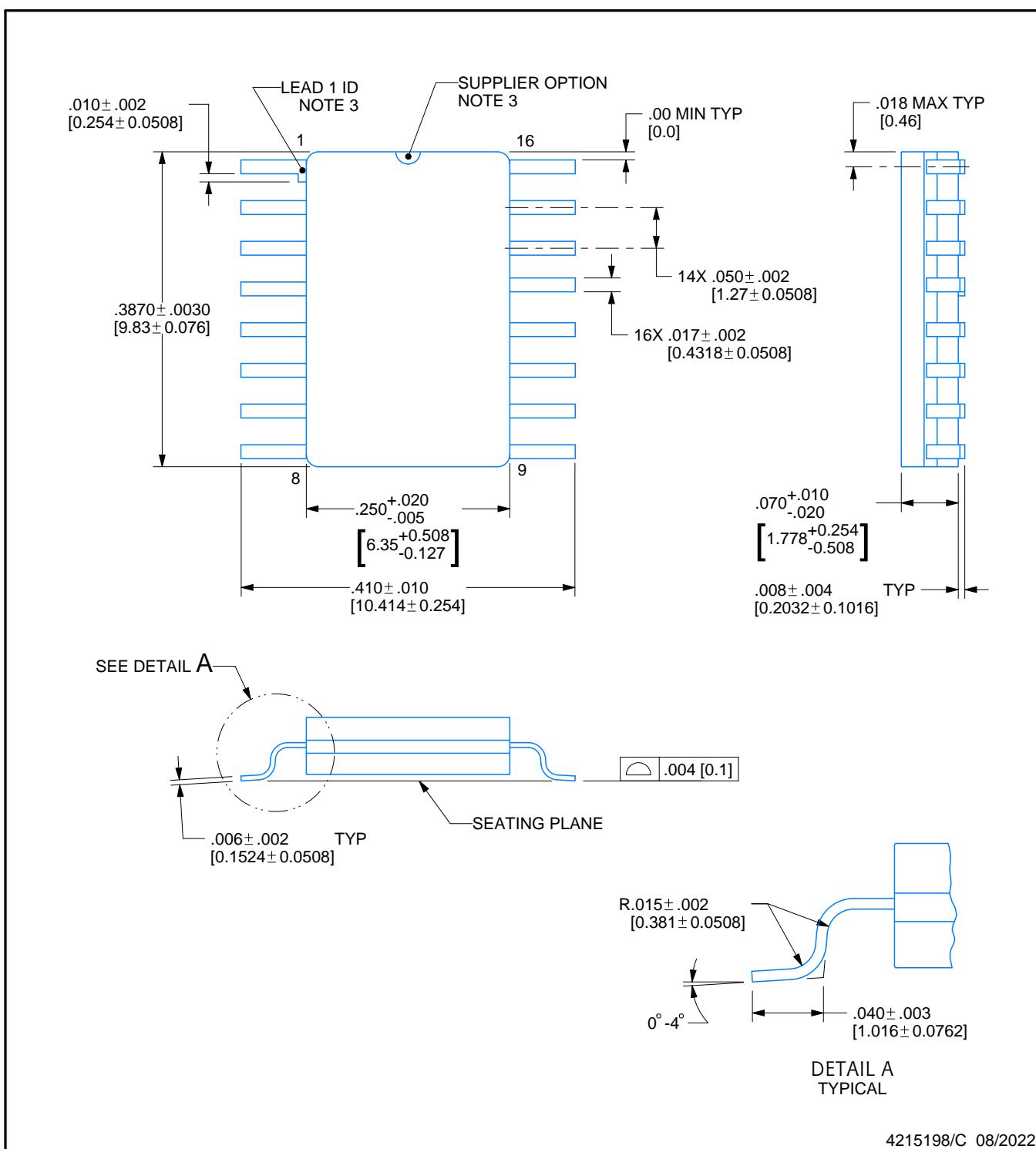
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LP2953QML, LP2953QML-SP :

- Military : [LP2953QML](#)
- Space : [LP2953QML-SP](#)

NOTE: Qualified Version Definitions:

- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application


PACKAGE OUTLINE

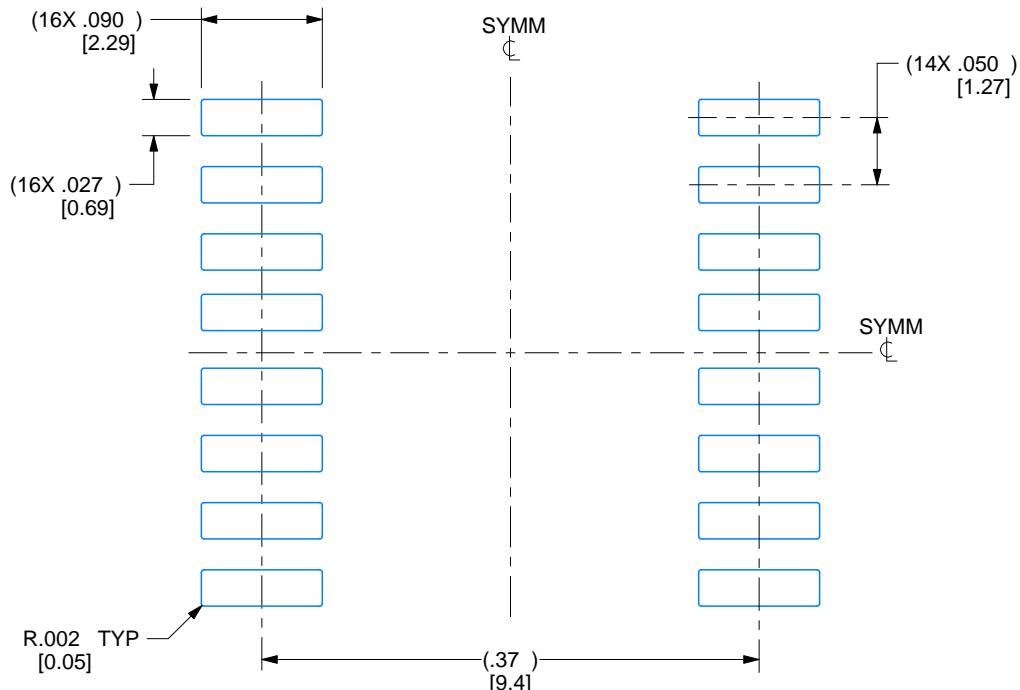
NAC0016A

CFP - 2.33mm max height

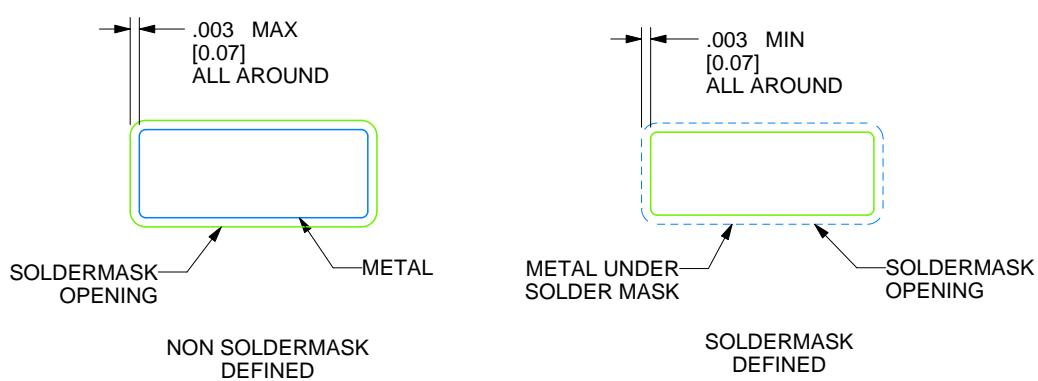
CERAMIC FLATPACK

4215198/C 08/2022

NOTES:


1. Controlling dimension is Inch. Values in [] are milimeters. Dimensions in () for reference only.
2. For solder thickness and composition, see the "Lead Finish Composition/Thickness" link in the packaging section of the Texas Instruments website
3. Lead 1 identification shall be:
 - a) A notch or other mark within this area
 - b) A tab on lead 1, either side
4. No JEDEC registration as of December 2021

EXAMPLE BOARD LAYOUT


NAC0016A

CFP - 2.33mm max height

CERAMIC FLATPACK

RECOMMENDED LAND PATTERN

4215198/C 08/2022

REVISIONS

REV	DESCRIPTION	E.C.N.	DATE	BY/APP'D
A	RELEASE TO DOCUMENT CONTROL	2197879	12/30/2021	TINA TRAN / ANIS FAUZI
B	NO CHANGE TO DRAWING; REVISION FOR YODA RELEASE;	2198832	02/15/2022	K. SINCERBOX
C	.387±.003 WAS .39000±.00012;	2200917	08/08/2022	D. CHIN / K. SINCERBOX

SCALE

SIZE

A

4215198

REV
CPAGE
4 OF 4

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025