

FlatLink™ RECEIVER

Check for Samples: SN65LVDS86A-Q1

FEATURES

- 3:21 Data Channel Expansion at up to 178.5 Mbytes/s Throughput
- Suited for SVGA, XGA, or SXGA Display Data **Transmission From Controller to Display With** Very Low EMI
- Three Data Channels and Clock Low-Voltage Differential Channels In and 21 Data and Clock **Low-Voltage TTL Channels Out**
- Operates From a Single 3.3-V Supply
- Tolerates 4-kV Human-Body Model (HBM) ESD
- Packaged in Thin Shrink Small-Outline Package (TSSOP) With 20-Mil Terminal Pitch
- Consumes Less Than 1 mW When Disabled
- Wide Phase-Lock Input Frequency Range 31 MHz to 68 MHz
- No External Components Required for PLL
- Inputs Meet or Exceed the Standard Requirements of ANSI EIA/TIA-644 Standard
- Improved Replacement for the SN75LVDS86 and NSC DS90C364
- **Improved Jitter Tolerance**
- **Qualified for Automotive Applications**

NC - Not connected

DESCRIPTION

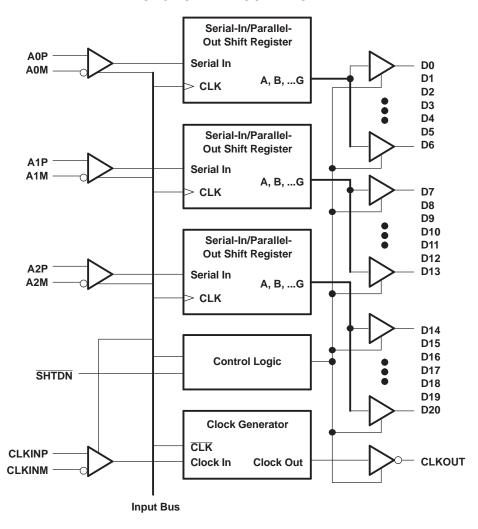
The SN65LVDS86A FlatLink™ receiver contains three serial-in 7-bit parallel-out shift registers and four low-voltage differential signaling (LVDS) line receivers in a single integrated circuit. These functions allow receipt of synchronous data from a compatible transmitter, such as the SN75LVDS81, '83, '84, or '85, over four balanced-pair conductors and expansion to 21 bits of single-ended low-voltage LVTTL synchronous data at a lower transfer rate.

When receiving, the high-speed LVDS data is received and loaded into registers at seven times the LVDS input clock (CLKIN) rate. The data is then unloaded to a 21-bit wide LVTTL parallel bus at the CLKIN rate. The SN65LVDS86A presents valid data on the falling edge of the output clock (CLKOUT).

The SN65LVDS86A requires only four line-termination resistors for the differential inputs and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with the data transmission transparent to the user(s). The only user intervention is the possible use of the shutdown/clear (SHTDN) active-low input to inhibit the clock and shut off the LVDS receivers for lower power consumption. A low level on this signal clears all internal registers to a low level.

The SN65LVDS86A is characterized for operation over the full automotive temperature range of -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. FlatLink is a trademark of Texas Instruments.



ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 125°C	TSSOP - DGG	Reel of 2000	SN65LVDS86ADGGRQ1	65LVDS86AQ	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTIONAL BLOCK DIAGRAM

www.ti.com

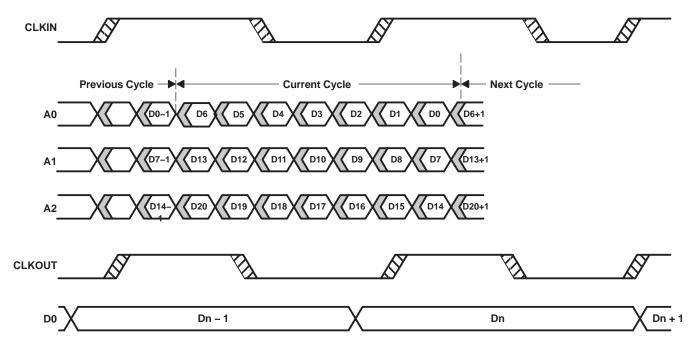
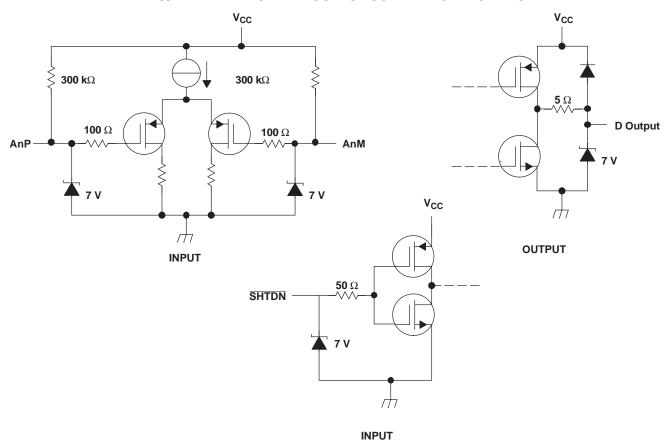



Figure 1. SN65LVDS86A Load and Shift Timing Sequences

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			МІ	N MAX	UNIT
V_{CC}	Supply voltage range ⁽²⁾		-0.	5 4	V
	Voltage range at any terminal		-0.	5 V _{CC} + 0.5	V
	Floring static dischause (3)	All pins (Class 3A)		0.5	kV
	Electrostatic discharge (3)	All pins (Class 2B)			V
	Continuous total power dissipation		See	Dissipation Ra	ting Table
T_{J}	Operating virtual junction temperature range		-4	0 150	°C
T _{stg}	Storage temperature range		-6	5 150	°C
	Lead temperature 1,6 mm (1/16 in) from cas	e for 10 s		260	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Dissipation Rating Table

PACKAGE	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾	T _A = 70°C	T _A = 125°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DGG	1637 mW	13.1 mW/°C	1048 mW	327 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board mounted and with no air flow.

Recommended Operating Conditions

See Figure 2

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3	3.3	3.6	V
V_{IH}	High-level input voltage (SHTDN)	2			V
V_{IL}	Low-level input voltage (SHTDN)			0.8	V
V _{ID}	Magnitude differential input voltage	0.1		0.6	V
V _{IC}	Common-mode input voltage	$\frac{ V_{\text{ID}} }{2}$	2	$4.4 - \frac{ V_{\text{ID}} }{2}$	٧
T _A	Operating free-air temperature	-40		125	°C

Timing Requirements

		MIN	NOM	MAX	UNIT
t _c (1)	Cycle time, input clock	14.7	t _c	32.4	ns

(1) Parameter t_c is defined as the mean duration of a minimum of 32000 clock cycles.

Submit Documentation Feedback

 ⁽²⁾ All voltage values are with respect to the Grap Community
 (3) This rating is measured using MIL-STD-883C Method, 3015.7. All voltage values are with respect to the GND terminals unless otherwise noted.

Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITION	TEST CONDITIONS			MAX	UNIT
V _{IT+}	Positive-going differential input threshold voltage					100	mV
V_{IT-}	Negative-going differential input threshold voltage (2)			-100			mV
V_{OH}	High-level output voltage	I _{OH} = -4 mA		2.4	·		V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA				0.4	V
		Disabled,	All inputs to GND			280	μΑ
	Quiescent current (average)	Enabled, AnM = 1.4 V,	AnP = 1 V, $t_c = 15.38 \text{ ns}$		33	40	
I _{CC}		Enabled, Grayscale pattern (see Figure 3),	$C_L = 8 \text{ pF},$ $t_c = 15.38 \text{ ns}$		43		mA
		Enabled, Worst-case pattern (see Figure 4),	$C_L = 8 \text{ pF},$ $t_c = 15.38 \text{ ns}$		68		
I _{IH}	High-level input current (SHTDN)	V _{IH} = V _{CC}			·	±20	μΑ
I _{IL}	Low-level input current (SHTDN)	V _{IL} = 0			 ,	±25	μA
I	Input current A inputs	0 ≤ V _I ≤ 2.4 V				±20	μΑ
loz	High-impedance output current	$V_O = 0$ or V_{CC}				±10	μA

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{su}	Setup time, D0–D20 to CLKOUT↓	C - 9 pE Soo Figure F	5			ns
t _h	Data hold time, CLKOUT↓ to D0-D20	C _L = 8 pF, See Figure 5	5			ns
t _(RSKM)	Receiver input skew margin ⁽²⁾ (see Figure 7)	t_c = 15.38 ns (±0.2%), Input clock jitter < 50 ps, (3)	550	700		ps
t _d	Delay time, CLKIN↑ to CLKOUT↓ (see Figure 7)	$V_{CC} = 3.3 \text{ V},$ $t_c = 15.38 \text{ ns (\pm 0.2\%)}, T_A = 25^{\circ}\text{C}$	3	5	7	ns
t _{en}	Enable time, SHTDN to phase lock	See Figure 7		1		ms
t _{dis}	Disable time, SHTDN to off state	See Figure 8		400		ns
t _t	Transition time, output (10% to 90% t_{r} or t_{f}) (data only)	C _L = 8 pF		3		ns
t _t	Transition time, output (10% to 90% t _r or t _f) (clock only)	C _L = 8 pF		1.5		ns
t _w	Pulse duration, output clock			0.50 t _c		ns

The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going input voltage threshold only.

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. The parameter $t_{(RSKM)}$ is the timing margin available to allocate to the transmitter and interconnection skews and clock jitter. The value of this parameter at clock periods other than 15.38 ns can be calculated from $t_{RSKM} = tc/14 - 550 \text{ ps}$.

[|]Input clock jitter| is the magnitude of the change in input clock period.

PARAMETER MEASUREMENT INFORMATION

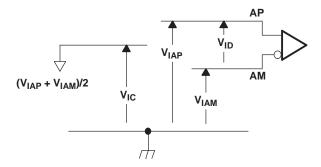
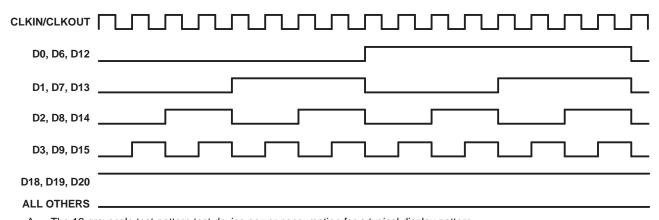
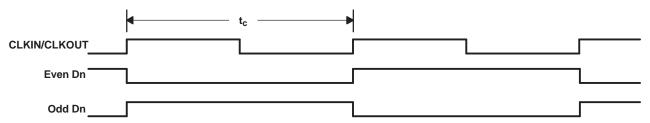




Figure 2. Voltage Definitions

A. The 16-grayscale test-pattern test device power consumption for a typical display pattern.

Figure 3. 16-Grayscale Test-Pattern Waveforms

A. The worst-case test pattern produces nearly the maximum switching frequency for all of the LVTTL outputs.

Figure 4. Worst-Case Test-Pattern Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

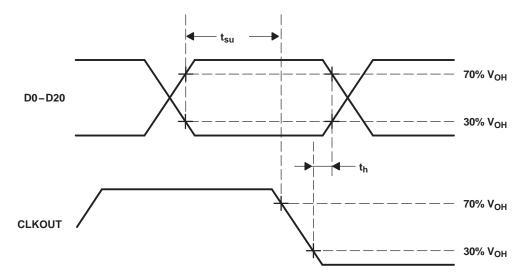
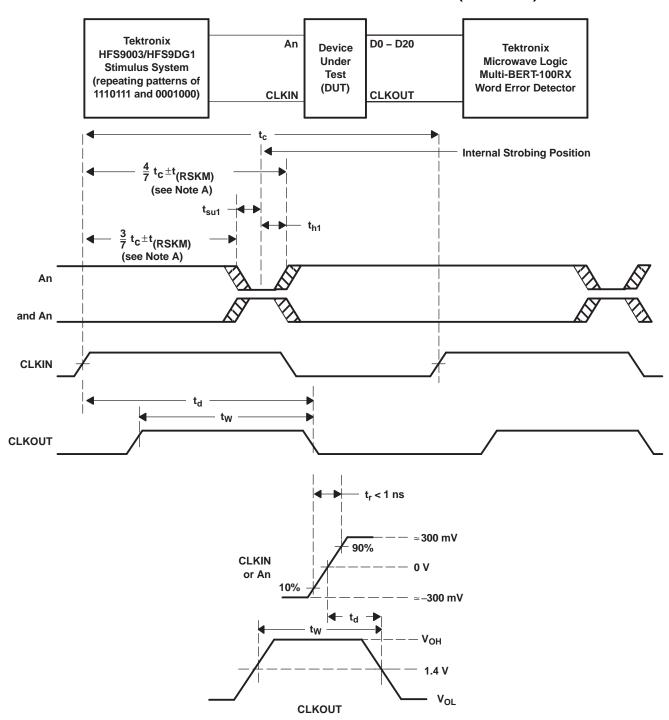



Figure 5. Setup and Hold Time Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

A. CLKIN is advanced or delayed with respect to data until errors are observed at the receiver outputs. The advance or delay is then reduced until there are no data errors observed. The magnitude of the advance or delay is t_(RSKM).

Figure 6. Receiver Input Skew Margin, Setup/Hold Time, and Delay Time Definitions

CLKOUT

PARAMETER MEASUREMENT INFORMATION (continued)

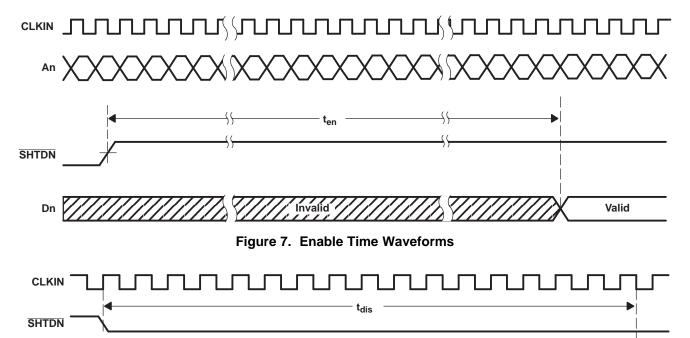


Figure 8. Disable Time Waveforms

TYPICAL CHARACTERISTICS

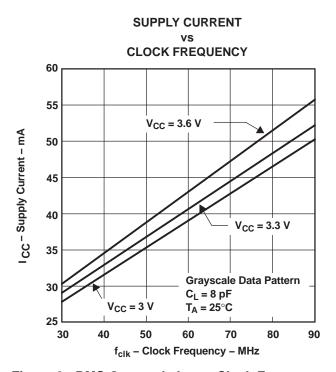
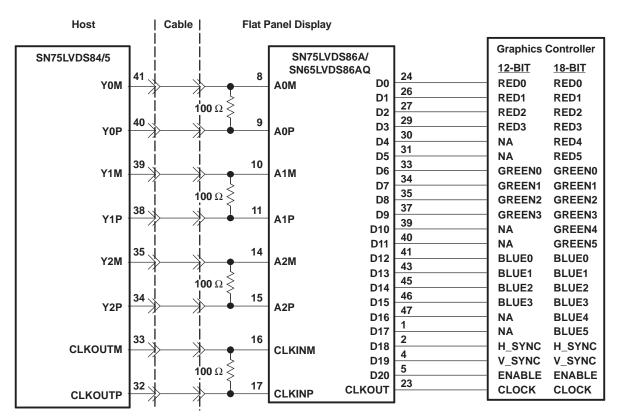
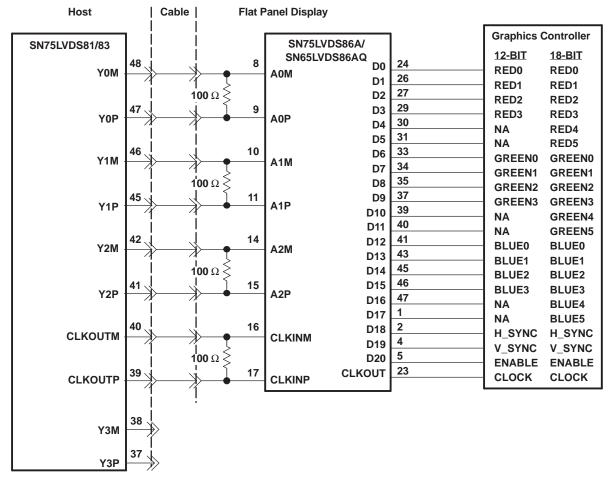



Figure 9. RMS Grayscale I_{CC} vs Clock Frequency


APPLICATION INFORMATION

- A. The four $100-\Omega$ terminating resistors are recommended to be 0603 types.
- B. NA not applicable, these unused inputs should be left open.

Figure 10. 18-Bit Color Host to Flat Panel Display Application

- A. The four $100-\Omega$ terminating resistors are recommended to be 0603 types.
- B. NA not applicable, these unused inputs should be left open.

Figure 11. 24-Bit Color Host to 18-Bit Color LCD Panel Display Application

See the FLatLink Designer's Guide (literature number SLLA012) for more application information.

www.ti.com

Ch	hanges from Original (August 2006) to Revision A	Page
•	Changed Wide Phase-Lock Input Frequency Range lower limit from 10 MHz to 31 MHz	1

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN65LVDS86AQDGGG4	Active	Production	TSSOP (DGG) 48	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	65LVDS86AQ
SN65LVDS86AQDGGG4.A	Active	Production	TSSOP (DGG) 48	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	65LVDS86AQ
SN65LVDS86AQDGGRG4	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	65LVDS86AQ
SN65LVDS86AQDGGRG4.A	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	65LVDS86AQ
SN65LVDS86AQDGGRQ1	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	65LVDS86AQ
SN65LVDS86AQDGGRQ1.A	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	65LVDS86AQ

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

OTHER QUALIFIED VERSIONS OF SN65LVDS86A-Q1:

■ Catalog : SN65LVDS86A

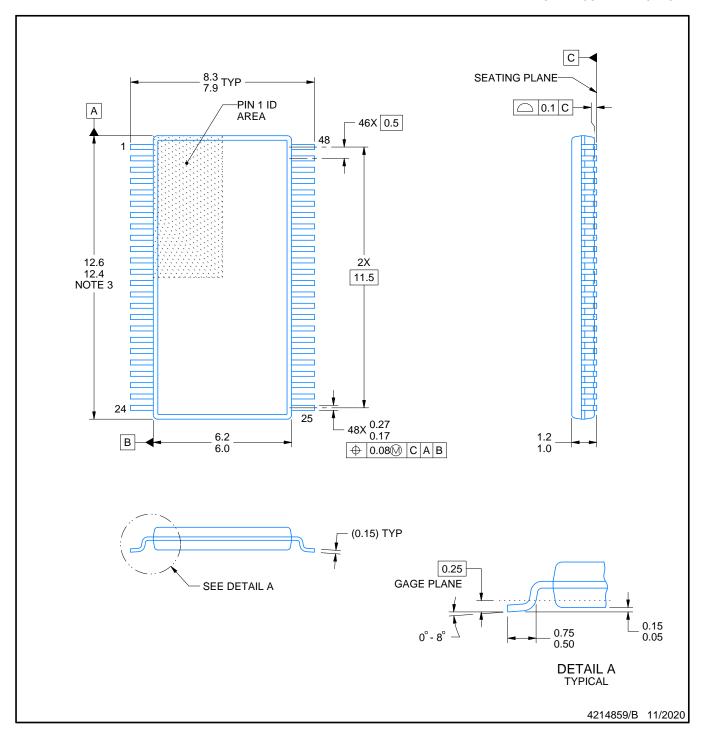
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

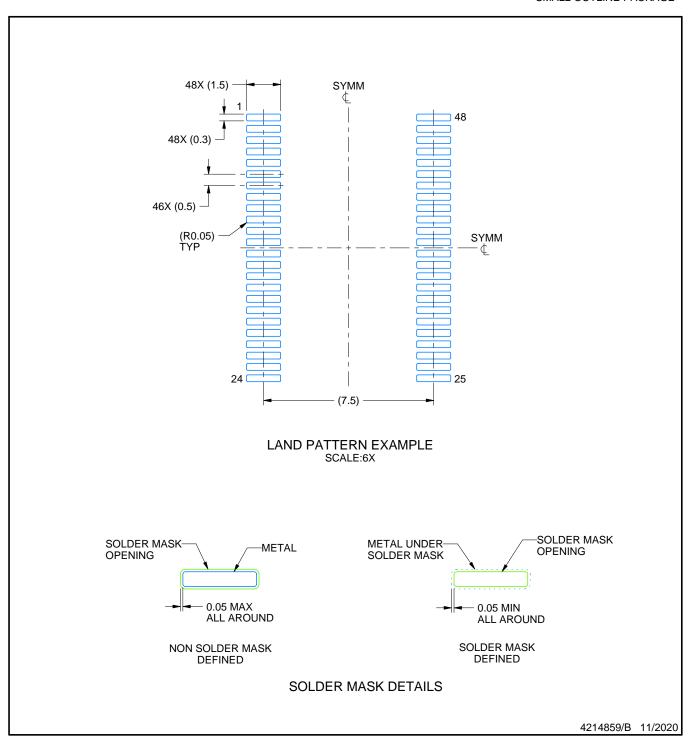


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65LVDS86AQDGGG4	DGG	TSSOP	48	40	530	11.89	3600	4.9
SN65LVDS86AQDGGG4.A	DGG	TSSOP	48	40	530	11.89	3600	4.9

SMALL OUTLINE PACKAGE

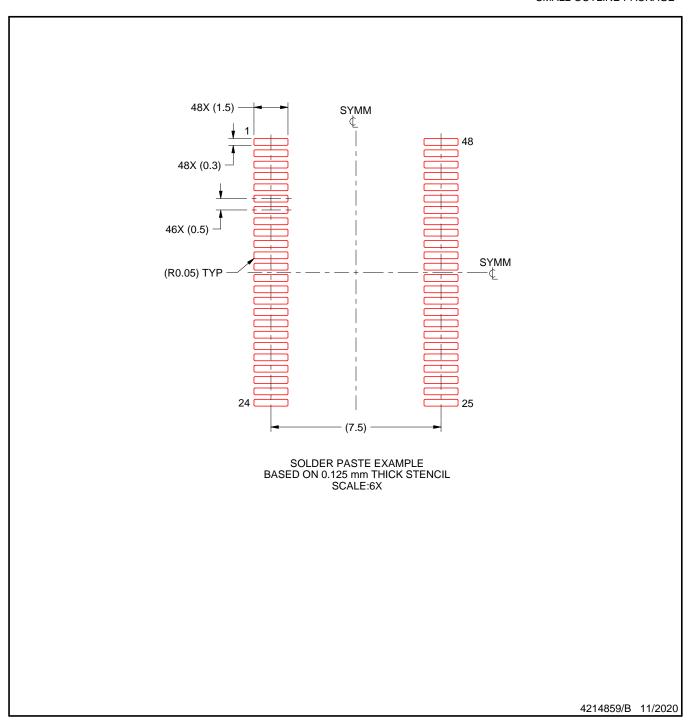
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

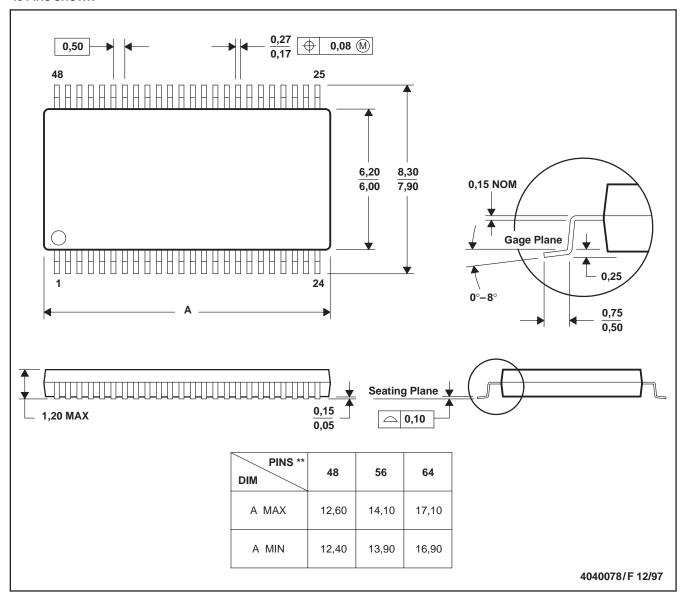


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025